[itex]\exists{x}(P(x)\Rightarrow{Q(x)})\equiv{\forall{x}P(x)\Rightarrow{\exists{x}Q(x)}}[/itex](adsbygoogle = window.adsbygoogle || []).push({});

I am able to derive this equivalence by using the standard equivalences of symbolic logic, but when I try to verify this semantically, with an example, I just can't see why these two expressions are equivalent.

Example:

Lets say that x represents days, P(x) represents it's cold on day x, and Q(x) represents it is snowing on day x. If it is true that it is cold every day, and it is true that there is a snowy day, why must it be true that there is a day when, if it is cold, than snow MUST fall?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Difficulty understanding a logical equivalence

**Physics Forums | Science Articles, Homework Help, Discussion**