Dim null ST <= dim null S + dim null T

  • Thread starter Thread starter fishturtle1
  • Start date Start date
Click For Summary
The discussion focuses on proving the relationship between the dimensions of the null spaces of the compositions of linear transformations, specifically that the dimension of the null space of the composition ST is less than or equal to the sum of the dimensions of the null spaces of S and T. It establishes that since U and V are finite-dimensional, the null spaces of S and T are also finite-dimensional. The proof involves demonstrating that the span of certain bases can represent the null space of the composition, using the rank-nullity theorem to support the conclusion. The participants clarify the relationship between the null spaces and provide hints for finding appropriate bases. Ultimately, the proof confirms that the dimension of the null space of ST is bounded by the dimensions of the null spaces of S and T combined.
fishturtle1
Messages
393
Reaction score
82
Homework Statement
Suppose ##U## and ##V## are finite dimensional vector spaces and ##S \in \mathcal{L}(V, W)## and ##T \in \mathcal{L}(U, V)##. Prove that ##\dim \operatorname{null} ST \le \dim \operatorname{null} S + \dim \operatorname{null} T##.
Relevant Equations
------
For a linear map ##T \in \mathcal{L}(U, V)##, ##\text{null} T = \lbrace u \in U : Tu = 0 \rbrace##

Fundamental theorem of linear maps: ##\dim U = \dim \text{null} T + \dim T(U)##
--------
Proof: Since ##U, V## are finite dimensional, we have that ##\operatorname{null} S, \operatorname{null} T## are finite dimensional. Let ##v_1, \dots v_m## be a basis of ##\operatorname{null}S## and ##u_1, \dots, u_n## be a basis of ##\operatorname{null} T##. It is enough to show there are ##m + n## vectors that span ##\operatorname{null} ST##. Let ##x \in \operatorname{null}ST##. Then ##x \in \operatorname{null}T## or ##Tx \in \operatorname{null}S##. So ##u_1, \dots, u_n## is in our list of ##m+n## vectors.

If ##T## maps onto ##\operatorname{null}S##, then for each ##v_i## there is ##y_i \in U## such that ##Ty_i = v_i##. So ##Ty_1, \dots, Ty_m## spans ##\operatorname{null}S##. This implies ##\operatorname{span} \lbrace y_1, \dots, y_m, u_1, \dots, u_n \rbrace\supseteq \operatorname{null}ST##. But I don't think I can say ##T## maps onto ##\operatorname{null}S##. Can I have a hint, please?
 
Physics news on Phys.org
The approach of finding a spanning set of at most ##m+n## should work, and the ##u_i## should be included. Instead of taking these vectors ##y_i##, how about taking a basis for ##\text{Range}(T)\cap\text{Nul}(S)##?

Edit: To clarify, if ##Tx_1,\ldots, Tx_n## is such a basis, I mean to use the vectors ##x_1,\ldots, x_n.##
 
Last edited:
  • Like
Likes fishturtle1
Hint: ##\operatorname{null}(ST) = T^{-1}(\operatorname{null}(S))## and rank-nullity theorem.
 
  • Like
Likes fishturtle1
Thank you, I think I got it using what you said:

Proof: Since ##U, V## are finite dimensional, we have ##\operatorname{null} S## and ##\operatorname{null}T## are finite dimensional. Let ##u_1, \dots, u_n## be a basis for ##\operatorname{null} T## and ##Tx_1, \dots, Tx_k## be a basis for ##\operatorname{Range}(T) \cap \operatorname{null} S##. We note that ##k \le \dim \operatorname{null} S##. We'll show the statement ##\operatorname{span} \lbrace u_1, \dots, u_n, x_1, \dots, x_k \rbrace = \operatorname{null} ST## is true.

##(\subseteq)## Let ##a_1u_1 + \dots a_nu_n + b_1x_1 + \dots + b_kx_k \in \operatorname{span} \lbrace u_1, \dots, u_n, x_1, \dots, x_k \rbrace##. Then

##
\begin{align*}
ST(a_1u_1 + \dots a_nu_n + b_1x_1 + \dots + b_kx_k) &= S(a_1T(u_1) + \dots + a_n T(u_n) + b_1T(x_1) + \dots + b_kT(x_k)) \\
& = S(0 + \dots + 0 + b_1T(x_1) + \dots + b_kT(x_k)) \\
&= S(b_1T(x_1) + \dots + b_kT(x_k)) \\
&= 0
\end{align*}##
This shows ##\operatorname{span} \lbrace u_1, \dots, u_n, x_1, \dots, x_k \rbrace \subseteq \operatorname{null} ST##.

##(\supseteq)## If ##x \in \operatorname{null}ST##, then ##x \in \operatorname{null}T## or ##Tx \in \operatorname{null} S##. I.e., ##x \in \operatorname{span} \lbrace u_1, \dots, u_n \rbrace##. Otherwise, ##Tx \in \operatorname{Range}(T) \cap \operatorname{null}S## and since ##x_1, \dots, x_k## is linearly independent, we have ##x \in \operatorname{span} \lbrace x_1, \dots, x_k \rbrace##. This shows ##\operatorname{span} \lbrace u_1, \dots, u_n, x_1, \dots, x_k \rbrace \supseteq \operatorname{null} ST##.

We can conclude ##\dim \operatorname{null}ST \le n + k \le n + m = \dim \operatorname{null}T + \dim \operatorname{null}S##. []
 
  • Like
Likes Infrared
I see using post #3:

Proof: First we show ##\operatorname{null}(ST) = T^{-1}(\operatorname{null}(S))##.

##(\subseteq)## Let ##x \in \operatorname{null}(ST)##. Then ##S(Tx) = 0## which means ##Tx \in \operatorname{null}(S)## i.e. ##x \in T^{-1}(\operatorname{null}(S))##.

##(\supseteq)## Let ##x \in T^{-1}(\operatorname{null}(S))##. Then ##Tx \in \operatorname{null}(S)## so ##S(Tx) = 0## i.e. ##x \in \operatorname{null}(ST)##.

We can conclude ##\operatorname{null}(ST) = T^{-1}(\operatorname{null}(S))##.

By rank nullity theorem: ##\dim \operatorname{null}(ST) = \dim T^{-1}(\operatorname{null}(S)) = \dim \operatorname{null}(T) + \dim T(T^{-1}(\operatorname{null}(S))) \le \operatorname{null}(T) + \operatorname{null}(S)##. []
 
  • Like
Likes member 587159
Or you can consider that ##KerT \subset KerST##. How much larger can it be?
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
34
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
10
Views
3K
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K