vela said:
Take the s=0, l=1 combination. Your formula says there are (2s+1)(2l+1) = 3 total states. Those states are
\begin{align*}
&\vert s=0,\ m_s=0;\ l=1,\ m_l=1\rangle \\
&\vert s=0,\ m_s=0;\ l=1,\ m_l=0\rangle \\
&\vert s=0,\ m_s=0;\ l=1,\ m_l=-1\rangle.
\end{align*}The other way to look at it is to sum the angular momenta together, ##\vec{J} = \vec{S} + \vec{L}##. According to the rules of addition of angular momenta, there is only a single allowed value for j, namely j=1, so there are 2j+1 = 3 states, corresponding to mj = 1, 0, and -1. Either way you get three states.
Now you do the s=1, l=1 combination. What are the allowed values of j?
So if I understand correctly, j= l+s = 2 for l=1, s=1 which means that the possible values of m_{j} are -2,-1,0,1,2 which gives the possible states of:
\begin{align*}
&\vert s=1,\ m_s=-1;\ l=1,\ m_l=1\rangle \\
&\vert s=1,\ m_s=-1;\ l=1,\ m_l=0\rangle \\
&\vert s=1,\ m_s=-1;\ l=1,\ m_l=-1\rangle \\
&\vert s=1,\ m_s=0;\ l=1,\ m_l=1\rangle \\
&\vert s=1,\ m_s=0;\ l=1,\ m_l=0\rangle \\
&\vert s=1,\ m_s=0;\ l=1,\ m_l=-1\rangle \\
&\vert s=1,\ m_s=1;\ l=1,\ m_l=1\rangle \\
&\vert s=1,\ m_s=1;\ l=1,\ m_l=0\rangle \\
&\vert s=1,\ m_s=1;\ l=1,\ m_l=-1\rangle.
\end{align*}
which gives 9 states total... (including the 3 states in the middle there which are the same as the ones given by s=0)