Dimensionless value to differentiate between concentrated and dispersed

independentphysics
Messages
26
Reaction score
2
Homework Statement
Find a dimensionless value to differentiate between concentrated and dispersed mass systems
Relevant Equations
Newtonian mechanics
I want to find a dimensionless value that differentiates between concentrated mass systems such as the solar system and dispersed mass systems such as a galaxy. I assume spherical and radial symmetry, consider both the cases for point masses or smooth mass distributions.

The only value I can think of is the sum of multiplying each mass by its distance, but then I have to normalize this by some mass*distance to make it dimensionless.

Is there any other alternative?
 
Physics news on Phys.org
For what purpose? It is hard to define such a thing without knowing what it will be used for.
For example: in the absense of elaboration, I offer the following:
1 for localized objects such as stars, and 0 for diffuse objects such as gas clouds.
Fractional values can serve for in-between states, such as rock piles.
 
DaveC426913 said:
For what purpose? It is hard to define such a thing without knowing what it will be used for.
For example: in the absense of elaboration, I offer the following:
1 for localized objects such as stars, and 0 for diffuse objects such as gas clouds.
Fractional values can serve for in-between states, such as rock piles.
Hi Dave,

I need a dimensionless value based of physical parameters to differentiate between concentrated mass systems such as the solar system and dispersed mass systems such as a galaxy.

I do not understand your proposal. Although it is a dimensionless value, how can it be derived from physical parameters?
 
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top