bdforbes
- 149
- 0
Show that
\stackrel{lim}{\alpha \rightarrow \infty} \int^{\infty}_{-\infty}g(x)\sqrt{\frac{\alpha}{\pi}}e^{-\alpha x^2} dx = g(0)
where g(x) is continuous.
To use the continuity of g(x) I started from
\left|g(x)-g(0)\right|<\epsilon
and tried to put it in into the integral:
<br /> \left| \int^{\delta}_{-\delta}g(x)\sqrt{\frac{\alpha}{\pi}}e^{-\alpha x^2} dx - \int^{\delta}_{-\delta}g(0)\sqrt{\frac{\alpha}{\pi}}e^{-\alpha x^2} dx \right|<br /> <br /> \leq \int^{\delta}_{-\delta}\left|g(x)-g(0)\right|\sqrt{\frac{\alpha}{\pi}}e^{-\alpha x^2} dx<br /> <br /> < \epsilon \int^{\delta}_{-\delta}\sqrt{\frac{\alpha}{\pi}}e^{-\alpha x^2} dx<br />
But I'm not sure where this gets me.
\stackrel{lim}{\alpha \rightarrow \infty} \int^{\infty}_{-\infty}g(x)\sqrt{\frac{\alpha}{\pi}}e^{-\alpha x^2} dx = g(0)
where g(x) is continuous.
To use the continuity of g(x) I started from
\left|g(x)-g(0)\right|<\epsilon
and tried to put it in into the integral:
<br /> \left| \int^{\delta}_{-\delta}g(x)\sqrt{\frac{\alpha}{\pi}}e^{-\alpha x^2} dx - \int^{\delta}_{-\delta}g(0)\sqrt{\frac{\alpha}{\pi}}e^{-\alpha x^2} dx \right|<br /> <br /> \leq \int^{\delta}_{-\delta}\left|g(x)-g(0)\right|\sqrt{\frac{\alpha}{\pi}}e^{-\alpha x^2} dx<br /> <br /> < \epsilon \int^{\delta}_{-\delta}\sqrt{\frac{\alpha}{\pi}}e^{-\alpha x^2} dx<br />
But I'm not sure where this gets me.