I How Does the Dirac Equation Utilize Component Functions in Its Derivation?

exponent137
Messages
562
Reaction score
35
In
https://quantummechanics.ucsd.edu/ph130a/130_notes/node45.html
after
"Instead of an equation which is second order in the time derivative, we can make a first order equation, like the Schrödinger equation, by extending this equation to four components."

it is evident that the solution is obtained with help of ##a^2-b^2=(a+b)(a-b)##

I cannot follow in this derivation, how rows ##\phi^{(L)}=...## and ##\phi^{(R)}=...## are used. Maybe more steps instead of these two rows will help.

Although I think that Feynman once described this more clearly in his book about QED.

Can someone, please, gives a link or more clearly explains this type of derivation of Dirac equation?
 
Last edited:
Physics news on Phys.org
I'm not sure what your point of confusion is. Do you understand that the following equations are true, by definition of ##\phi^{(R)}## and ##\phi^{(L)}## (plus the fact that ##\phi## obeys the second-order equation)?

##(i \hbar \frac{\partial}{\partial t} - i \hbar \sigma \cdot \nabla) \phi^{(R)} = mc \phi^{(L)}##

##(i \hbar \frac{\partial}{\partial t} + i \hbar \sigma \cdot \nabla)\phi^{(L)} = mc \phi^{(R)}##
 
  • Like
Likes exponent137
stevendaryl said:
I'm not sure what your point of confusion is. Do you understand that the following equations are true, by definition of ##\phi^{(R)}## and ##\phi^{(L)}## (plus the fact that ##\phi## obeys the second-order equation)?

##(i \hbar \frac{\partial}{\partial t} - i \hbar \sigma \cdot \nabla) \phi^{(R)} = mc \phi^{(L)}##

##(i \hbar \frac{\partial}{\partial t} + i \hbar \sigma \cdot \nabla)\phi^{(L)} = mc \phi^{(R)}##

If I put the second equation in the first one, I obtain:

##(i \hbar \frac{\partial}{\partial t} - i \hbar \sigma \cdot \nabla)(i \hbar \frac{\partial}{\partial t}+ i \hbar \sigma \cdot \nabla)\phi^{(L)} = (mc)^2 \phi^{(L)}##

One problem is solved, I think that now I understand this derivation of these two rows, as I mentioned. Thanks.

I think that Feynman used this type of calculation, as you wrote. But I think that he continued I little bit more cleary that in my link?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In her YouTube video Bell’s Theorem Experiments on Entangled Photons, Dr. Fugate shows how polarization-entangled photons violate Bell’s inequality. In this Insight, I will use quantum information theory to explain why such entangled photon-polarization qubits violate the version of Bell’s inequality due to John Clauser, Michael Horne, Abner Shimony, and Richard Holt known as the...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
I asked a question related to a table levitating but I am going to try to be specific about my question after one of the forum mentors stated I should make my question more specific (although I'm still not sure why one couldn't have asked if a table levitating is possible according to physics). Specifically, I am interested in knowing how much justification we have for an extreme low probability thermal fluctuation that results in a "miraculous" event compared to, say, a dice roll. Does a...
Back
Top