Orodruin said:
The second order derivative is necessary for Lorentz invariance.
When you go to the non relativistic limit from the relativistic case (I suggest looking at the Klein-Gordon equation first), you can get rid of an overall phase related to the rest energy (ie, mass). The leading correction is a first order derivative wrt time.
Thanks for the response, Orodruin, but that pithy explanation doesn't advance my understanding much of the situation. Admittedly, I'm a bit of an amateur in these affairs, hence the "B" rating in the title, so perhaps you or someone else can unpack your response some so I can integrate it into my level of understanding.
What is that level? Well, here's what I at least think I understand. We have three basic or main wave equations in QM. The famous one is the Schrodinger equation which essentially mimics the classical-physics energy-mass-momentum relationships. Total energy=kinetic energy + potential energy. In the Hamiltonian formulation I think it's H=P^2/2m + V, or something like that.
So, in the classical formulation, H is first order, and P is second order. So Schrodinger thought to mimic that by introducing the Energy and Momentum operators and,
viola, you have the Schrodinger equation.
What about the relativistic version where we have E^2=P^2+M^2 (setting c to 1)? Well, at first glance we could just replace E and P with the quantum operators that represent both and all should be good. This is the Klein-Gordon equation but it doesn't work for fermions. Why? Who knows, but Dirac's solution was to try and find a solution to Einstein's relativistic formula, E^2=P^2+M^2, but by formulating an equation that saw E as a first order term as in the classical relation rather than the Einsteinian relativistic second order relation. The result of his efforts were the Dirac matrices, of course, and I understand the logic behind those fairly well.
What I missed, though, was the part where "The second order derivative is necessary for Lorentz invariance." I don't know what this means. I think I understand pretty well SR and Lorentz invariance/co-cariance/transforms, at least as it relates to the 4-vector and d(tau)^2=dt^2-dx^2 variety, but I'm not sure what you mean by "The second order derivative is necessary for Lorentz invariance." Again, I'm an amateur at this so I need it explained in relation to the amateurish understanding of the situation as I've outlined above. Any help would be fantastic!