Dirac spinors in non-relativistic limit

Thomas Brady
Messages
12
Reaction score
0
So, I have to show that in the non-relativistic limit the lower two components of the positive energy solutions to the Dirac equation are smaller than the upper two components by a factor of ##\beta##.

I started with the spinor $$\psi = \begin{pmatrix} \phi \\ \frac {\vec \sigma \cdot \vec p} {E + m} \phi \end{pmatrix}$$ (##\phi## is a 2-component spinor and this doesn't include the normalization factor or the exponential)
The ##\sigma## being the Pauli matrices. Then I noted that in the non-relativistic limit ##E = \gamma m## and ##\gamma \rightarrow 1## so the denominator of the lower component is ##2m## and ##\vec p = m\vec v## in the non-relativistic limit so the m's cancel in the numerator and the denominator and I'm left with

$$\psi = \begin{pmatrix} \phi \\ \frac {\vec \sigma \cdot \vec v} {2} \phi \end{pmatrix}$$

so now I'm confused as to what to do with the ##\vec \sigma \cdot \vec v##. It seems like what I could try to do would leave the lower two components a factor of ##\frac \beta 2## smaller than the numerator.rather than just ##\beta##. So how do I approach this ##\vec \sigma \cdot \vec v##?
 
Physics news on Phys.org
P.S. I used n.u. for this
 
I think that the question is meant to ask you to show that the lower two components are smaller than the upper two components by a factor of order ##\beta## (even though it wasn't stated that way explicitly.) So, you don't need to distinguish between a factor of ##\beta## and a factor of ##\beta/2##. Hope I'm not misinterpreting things here.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top