danni7070
- 91
- 0
[Solved] Radius of Convergent
Find the radius of convergent for \sum_{n=1}^\infty (1-2^n)(ln(n))x^n
\frac {1}{R} = L = \lim \frac{a_{n+1}}{a_n}
lim \frac {(1-2^{n+1})(ln(n+1)}{(1-2^n)(ln(n))} = L
lim \frac {(1-2^n)(ln(n))}{(1-2^{n+1})(ln(n+1))} = R
I'm dizzy looking at this but how can I find:
\lim_{n\rightarrow\infty} R
Homework Statement
Find the radius of convergent for \sum_{n=1}^\infty (1-2^n)(ln(n))x^n
Homework Equations
\frac {1}{R} = L = \lim \frac{a_{n+1}}{a_n}
The Attempt at a Solution
lim \frac {(1-2^{n+1})(ln(n+1)}{(1-2^n)(ln(n))} = L
lim \frac {(1-2^n)(ln(n))}{(1-2^{n+1})(ln(n+1))} = R
I'm dizzy looking at this but how can I find:
\lim_{n\rightarrow\infty} R
Last edited: