Ok, that’s kinda what I thought you had in mind.
The reason the first method of simply adding gas to a cylinder (dU = Hin) is different than the latter is because of a few things. The gas is assumed to mix inside the cylinder, and the gas coming in is generally assumed to have a specific temperature (slightly above atmospheric). The end result is a temperature in the vessel which doesn’t increase along a line of constant entropy, the temperature is always much lower. However, in some cases such as very long tubes, the gas that starts out in the tube, is mostly pushed to the far end by the incoming gas resulting in very little mixing. This results in a much higher temperature at the far end of the tube, away from the inlet since no mixing can occur. In fact, if NO mixing occurs to this initial slug of gas that’s in the tube, the temperature can increase very closely along a line of constant entropy. In the case of oxygen systems for example, Teflon lined hoses and carbon steel pipe have been seen to burn since this added heat in a pure oxygen environment results in sufficient heat to initiate a fire, so non-flammable materials must be used.
The reason I’m explaining all this is because I’d like to suggest that this principal of preventing any kind of mixing with the incoming gas be used to try and obtain a temperature rise that closely follows a line of constant entropy, which will be the highest possible temperature rise. Also, you can then use the polytropic equation using n (the exponent) equal to the ratio of specific heats (n = 1.4) and show how the polytropic equation can be used to predict temperature rise.
Another post I was commenting on
https://www.physicsforums.com/showthread.php?t=212009", was interesting because of the suggestion of putting a balloon into an atmosphere and expanding or compressing it that way. Using a balloon means there’s no exchange of that initial slug of air with the air that’s coming in. Also, the balloon has very little thermal mass and a low conductive heat transfer coefficient. The heat transfer in such a balloon would be primarily dictated by convection between the air and the balloon, both inside and outside the balloon. In other words, heat transfer will be minimized by doing this. That’s a good thing!
I attached a sketch of what I’m thinking of. Basically, put a thermocouple or thermister into a balloon and inflate it, sealing it around the temperature probe wire. Then put the balloon, fully inflated, inside a pressure vessel or perhaps a piece of pipe with capped ends. Cap everything. When you’re ready, pressurize the pipe using an air source and measure the temperature inside the balloon. It should increase rapidly, and roughly follow the polytropic equation for n=1.4. What will prevent the temperature from rising along a line of constant entropy will be heat transfer. Both the balloon skin and the thermal mass of your measuring device will contribute significantly to heat transfer, so best to make your balloon initially as large as possible to increase the air’s mass, meaning your pipe must be big, and your thermocouple has to be as small as possible. Also suggest measuring the pressure inside the balloon before the experiment starts since it will be above atmospheric. Also, take into consideration the absolute pressure where you are. Denver for example is something like 12 to 13 psia (going from memory) so high altitude will also affect this. The absolute pressure in the balloon is what you want to put into the equation.
Oh, and the more rapid the pressure increase, the less time there is for heat transfer and the closer the temperature will rise along a line of constant entropy.
If you wanted to, you could have kids design different experiments playing with the different variables (ie: have different themocouples, fill the balloon more or less, pressurize faster or slower, etc….) and see what causes the highest possible temperature.
If you need materials, I’d suggest McMaster Carr or Grainger for small bits like this. Even if you can’t scrounge the parts, the total cost for brand new stuff shouldn’t exceed a few hundred $.
http://www.mcmaster.com/
http://www.grainger.com/Grainger/wwg/start.shtml