Distance of Closest Approach of Particle to PLanet

mm8070
Messages
6
Reaction score
0

Homework Statement


A particle, unknown mass, has velocity v0 and impact parameter b. It goes towards a planet, mass M, from very far away. Find from scratch (? I'm not sure why it says from scratch), the distance of closest approach.


Homework Equations


I believe this equation is relevant: Veff(r)=L2/2mr + V(r)


The Attempt at a Solution


I haven't attempted this problem because I have no idea what distance of closest approach is. I looked throughout my book and haven't found anything.
 
Physics news on Phys.org
This question really doesn't make sense to me. The "distance of closest approach" is just what it says- the distance a which the particle is closest to the planet as it flies by. Of course, it it hit the planet, that would be 0. But to calculate such a thing you would have to compute its trajectory which would involve knowing not only its initial distance and speed but also it initial direction of travel. when you said "velocity v_0, is that a velocity vector? That would help buit then your formula would be adding a number (L^2/2mr) to a vector (V(r)). In any case, I don't see how the "impact parameter" would be relevant if the particle does not "impact" the planet.
 
Maybe i should have written the equation as Ueff(r) = (angular momentum)2/2mr2 + U(r). Where U(r) is the potential energy. I also should have mentioned that part b says to use the section in my book about hyperbolas to show that the distance of closest approach is k/(ε + 1) where k and ε are some ridiculous constants that I'm certain would waste your time if I gave them to you. I'm sorry about that :frown:
 
Draw a line through the center of the planet, parallel to v0. The particle is a distance b from this line initially. Use this information to calculate the angular momentum L of the particle.

Once you have that, you can use energy considerations to figure out what the minimum value of r the particle can achieve is.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...

Similar threads

Back
Top