Distributive property-Subtraction

  • Thread starter Thread starter C0nfused
  • Start date Start date
AI Thread Summary
The discussion focuses on the distributive property of multiplication and the interpretation of subtraction in mathematical expressions. It clarifies that when applying the distributive property to (a+b)(c+d), one can treat (a+b) as a single entity, leading to the expression (a+b)c + (a+b)d. Additionally, it emphasizes that subtraction can be viewed as addition of negative numbers, confirming that expressions like a-b-c+d-e can be interpreted as a sum: a + (-b) + (-c) + d + (-e). The conversation also distinguishes between defining and proving mathematical concepts, particularly regarding the additive inverse. Overall, the thread reinforces the understanding of operations in mathematics using foundational definitions.
C0nfused
Messages
139
Reaction score
0
Hi everybody,
1) We have defined the distributive propery of multiplication like this:
a(b+c)=ab+ac and (a+b)c=ac+bc . So when we have (a+b)(c+d) , how do we get the result using the above definition? We just consider one of the parentheses as one number so we get (a+b)c+(a+b)d for example(we think of (a+b) as a number g?)?

2) And one more thing: we define -x as the number that when added to x gives a sum 0. We also define that -x=(-1)x and a-b=a+(-b) (definition od subtraction). So when we have an expression like this: a-b-c+d-e this is considered a sum ? I mean the minus signs in the above expression show subtraction or the above is the same (i mean not only in the result but also in the interpretation of it) as this: a+(-b)+(-c)+d+(-e) ?

The 1st refers to multiplication of reals or generally for scalar multiplication in a vector space or multiplication in a field
The 2nd refers to reals but also generally to addition in a vector space

They may be silly questions but i like to understand things by using only the definitions

Thanks
 
Mathematics news on Phys.org
You're right about 1)
As for 2)
We do NOT define -x=(-1)*x, we prove that statement as follows:
a) For any real number "a", we have a*0=0
PROOF:
z=a*0=a*(0+0)=a*0+a*0=z+z, that is: z=z+z
But, since "z" is a real number, it has an additive inverse -z:
z+(-z)=z+z+(-z) which means 0=z.
which was what we should prove.
b) The additive inverse of a number is unique:
Proof:
Suppose z2 was an additive inverse to z other than (-z).
Then:
0=z+z2, adding (-z) to both sides yields:
(-z)=z2

c) Since x=1*x, we have:
x+(-1)*x=x*1+x*(-1)=x*(1+(-1))=x*0=0, by a).
Bot from b), it then follows that (-1)*x=(-x)
 
Thanks for your answer. I think that one part was not answered:

"So when we have an expression like this: a-b-c+d-e this is considered a sum ? I mean the minus signs in the above expression show subtraction or the above is the same (i mean not only in the result but also in the interpretation of it) as this: a+(-b)+(-c)+d+(-e) ?"
 
Oh, yes:
In this perspective, there exists only two operations: Multiplication and addition.
The subtraction a-b is a short-hand notation for the addition a+(-b)
 
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top