Divergence Theorem/Surface Gradient

Click For Summary
The discussion centers on Overbeek's paper regarding the electrostatic energy of a double layer, where he presents a transformation akin to the divergence theorem involving scalar fields that vanish at infinity. The transformation includes a normal derivative, which has caused confusion regarding its interpretation, particularly the concept of the surface gradient. The participant notes a lack of clarity in applying the standard definition of the unit normal due to the specific conditions of the scalar fields involved. Another contributor clarifies that the transformation aligns with Green's first identity, emphasizing the normal derivative of the scalar function. Overall, the conversation highlights the complexities of applying multivariate calculus concepts to this specific context.
Parmenides
Messages
34
Reaction score
0
There is a paper in chemical physics by Overbeek in which he describes the electrostatic energy of a double layer as the "energy of the surface charges and bulk charges in a potential field"; the transformation that he provides appears to be a variant of the divergence theorem in which he introduces scalar fields ##a## and ##b## that vanish at infinity, having values ##a_0## and ##b_0##, respectively, at a surface ##A##. The transformation is presented as:
<br /> -\int_{A}a_0\nabla_nbdA = \int_{V}(a\nabla^2b + \nabla{a}\cdot\nabla{b})dV<br />
Where he states that "##\nabla_n## is directed from the surfaces into the volume V". I have never encountered the gradient as being taken with respect to a normal ##n## and so this transformation is a bit perplexing. The only thing I have been able to go on is the rare definition of the so-called 'surface gradient' on wikipedia where we have ##\nabla_S{u} = \nabla{u} - \hat{n}(\hat{n}\cdot{\nabla{u}})## for some scalar ##u## on a surface ##S##, but this does not seem to be directly comparable. I can't seem to use the usual definition of the unit normal as ##\hat{n} = \frac{\nabla{a}}{\|a\|}## because ##a## (or ##b##) is not equal to 0.

I seem to have forgotten some concepts in multivariate calculus. Could someone provide some clarity? The paper can be found at http://www.sciencedirect.com/science/article/pii/016666229080132N
 
Physics news on Phys.org
Solved. Sort of.

This is actually Green's first identity, with ##\nabla_n{a}## being the normal derivative of the scalar function ##a##. As this is in the mathematics section and not physics, I won't bother with the extension to electric fields and potential.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 4 ·
Replies
4
Views
7K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
6
Views
2K