Divisibility rules and proof by contradiction

tt2348
Messages
141
Reaction score
0
I posted this in the number theory forum to no success... so I figured maybe the homework help people would have some input

Let x,y,z be integers with no common divisor satisfying a specific condition, which boils down to
5|(x+y-z) and 2*5^{4}k=(x+y)(z-y)(z-x)((x+y)^2+(z-y)^2+(z-x)^2)
or equivalently 5^{4}k=(x+y)(z-y)(z-x)((x+y-z)^2-xy+xz+yz)
I want to show that GCD(x,y,z)≠1, starting with the assumption 5 dividing (x+y), (z-y), or (z-x) results in x,y or z being divisible by 5. then it's easy to show that 5 divides another term, implying 5 divides all three.
I run into trouble assuming 5 divides the latter part, 2((x+y)^2+(z-y)^2+(z-x)^2)=((x+y-z)^2-xy+xz+yz) and showing the contradiction from that point.
Any hints?
 
Physics news on Phys.org
Hello tt2348,
Leave the square terms unchanged and consider all possible values of the square of any integer mod 5 .There are three squares here() .How will you get them to get an expression divisible by 5 ?There lies the answer that one of the square terms has to be divisible by 5.
Hoping this helps.
regards
Yukoel
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top