MHB Do disjoint cycles commute under exponentiation? (Curious)

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Induction
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

1. Let $1\leq n\in \mathbb{N}$ and $\pi\in \text{Sym}(n)$. For $1\leq k\in \mathbb{N}$ we define $\pi^{-k}:=\left (\pi^n\right )^{-1}$.

Show for all $k,\ell\in \mathbb{Z}$ the equation $\pi^k\circ \pi^{\ell}=\pi^{k+\ell}$. 2. Let $1\leq n\in \mathbb{N}$. Show that $\pi^{n!}=\text{id}$ for all $\pi\in \text{Sym}(n)$.
Do we show both statements using induction? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

1. Let $1\leq n\in \mathbb{N}$ and $\pi\in \text{Sym}(n)$. For $1\leq k\in \mathbb{N}$ we define $\pi^{-k}:=\left (\pi^n\right )^{-1}$.

Hey mathmari!

Is that a typo? Shouldn't it be $\pi^{-k}:=\left (\pi^k\right )^{-1}$? (Wondering)

mathmari said:
Show for all $k,\ell\in \mathbb{Z}$ the equation $\pi^k\circ \pi^{\ell}=\pi^{k+\ell}$. 2. Let $1\leq n\in \mathbb{N}$. Show that $\pi^{n!}=\text{id}$ for all $\pi\in \text{Sym}(n)$.
Do we show both statements using induction?

I don't think we need induction for 1.
Instead I think we need to distinguish cases.
If k and l are positive, the relation follows from the definition of repeated application of a function.
However, if either is negative or zero, we still need to see what happens. (Thinking)

For question 2, I think we need group theory. Specifically that the order of an element divides the size of a finite group. Then we don't need induction. (Thinking)
 
I noticed now that the hint for induction is for question 1.

There is the following hint:

$\pi\in \text{Sym}(n)$

$\pi=\pi_1\circ \pi_2\circ \ldots \circ \pi_m$, $m\leq n$

$\pi$ has maximum length $n$

We are looking for $x\in \mathbb{N}$ such that $\pi^x=(\pi_1\circ \pi_2\circ \ldots \circ \pi_m)^x\ \overset{\text{Induction}}{ =} \ \pi_1^x\circ \pi_2^x\circ \ldots \circ \pi_m^x=\text{id}$

For $1\leq i\leq m$ the $\pi_i$ is a cycle of length $m_i$.

It holds that $(\pi_i)^{m_i}=\text{id}$ so $(\pi_i)^{n!}=\text{id}$ .

Then $\pi^{n!}=\pi_1^{n!}\circ \pi_2^{n!}\circ \ldots \circ \pi_m^{n!}=\text{id}\circ \text{id}\circ \ldots \circ \text{id}=\text{id}$.

(Wondering)
 
mathmari said:
I noticed now that the hint for induction is for question 1.

There is the following hint:

$\pi\in \text{Sym}(n)$

$\pi=\pi_1\circ \pi_2\circ \ldots \circ \pi_m$, $m\leq n$

$\pi$ has maximum length $n$

What do you mean by maximum length? (Wondering)

mathmari said:
We are looking for $x\in \mathbb{N}$ such that $\pi^x=(\pi_1\circ \pi_2\circ \ldots \circ \pi_m)^x\ \overset{\text{Induction}}{ =} \ \pi_1^x\circ \pi_2^x\circ \ldots \circ \pi_m^x=\text{id}$

For $1\leq i\leq m$ the $\pi_i$ is a cycle of length $m_i$.

I don't think this is true in general.
Consider for instance $(1) \circ (1\,2) \circ (1\,2\,3) = (2\,3)$ and $x=3$.
Then:
$$\big((1) \circ (1\,2) \circ (1\,2\,3)\big)^3 = (2\,3)^3=(2\,3)
\ne (1\,2)= (1)^3 \circ (1\,2)^3 \circ (1\,2\,3)^3 $$
isn't it? (Worried)

Is it perhaps supposed to be a disjoint decomposition in cycles? (Wondering)

mathmari said:
It holds that $(\pi_i)^{m_i}=\text{id}$ so $(\pi_i)^{n!}=\text{id}$ .

Then $\pi^{n!}=\pi_1^{n!}\circ \pi_2^{n!}\circ \ldots \circ \pi_m^{n!}=\text{id}\circ \text{id}\circ \ldots \circ \text{id}=\text{id}$.
 
Klaas van Aarsen said:
What do you mean by maximum length? (Wondering)

I forgot the index. It should be: The cycle $\pi_i$ has maximum length $n$.
Klaas van Aarsen said:
I don't think this is true in general.
Consider for instance $(1) \circ (1\,2) \circ (1\,2\,3) = (2\,3)$ and $x=3$.
Then:
$$\big((1) \circ (1\,2) \circ (1\,2\,3)\big)^3 = (2\,3)^3=(2\,3)
\ne (1\,2)= (1)^3 \circ (1\,2)^3 \circ (1\,2\,3)^3 $$
isn't it? (Worried)

Is it perhaps supposed to be a disjoint decomposition in cycles? (Wondering)

Ahh ok! So if we suppose that $\pi_i\neq \pi_j$ for $i\neq j$, does the above hold? (Wondering)
 
mathmari said:
I forgot the index. It should be: The cycle $\pi_i$ has maximum length $n$.

Ahh ok! So if we suppose that $\pi_i\neq \pi_j$ for $i\neq j$, does the above hold?

That is not enough, is it?
If any pair $\pi_i$ and $\pi_j$ are cycles that overlap, the result won't hold. (Worried)

However, if the cycles are disjoint, the result does hold.
So if for instance $\pi=(1\,2\,3)(5\,6)$ with $\pi_1=(1\,2\,3)$ and $\pi_2=(5\,6)$, we have for any $x\in\mathbb Z$:
$$\pi^x = \big((1\,2\,3)\circ (5\,6)\big)^x = (1\,2\,3)^x \circ (5\,6)^x$$
Then we have $m=2$ and $m_1=3,\,m_2=2$. (Thinking)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 26 ·
Replies
26
Views
702
  • · Replies 52 ·
2
Replies
52
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K