Do disjoint cycles commute under exponentiation? (Curious)

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Induction
Click For Summary

Discussion Overview

The discussion revolves around the properties of permutations in the symmetric group, specifically addressing whether disjoint cycles commute under exponentiation. Participants explore the implications of the definitions and properties of permutations, including the use of induction and the concept of cycle decomposition.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants define $\pi^{-k}$ as $\left (\pi^n\right )^{-1}$ and question if this is a typo, suggesting it should be $\left (\pi^k\right )^{-1}$.
  • There is a proposal that the equation $\pi^k \circ \pi^{\ell} = \pi^{k+\ell}$ can be shown without induction by distinguishing cases based on the signs of $k$ and $\ell$.
  • One participant mentions that group theory principles indicate the order of an element divides the size of a finite group, which may eliminate the need for induction in proving that $\pi^{n!} = \text{id}$.
  • A hint for induction is provided, suggesting that if $\pi$ can be expressed as a product of cycles, then the identity can be reached through repeated application of these cycles.
  • Concerns are raised about the validity of the induction hint, with an example provided that shows a potential failure in the case of overlapping cycles.
  • Participants discuss the necessity of disjoint cycles for the proposed results to hold, suggesting that overlapping cycles could invalidate the conclusions drawn.

Areas of Agreement / Disagreement

Participants express uncertainty about the correctness of the induction approach and the definitions used. There is no consensus on whether the proposed statements hold true in general, particularly regarding the decomposition of cycles and the conditions under which the results apply.

Contextual Notes

Limitations include the need for clarification on the definitions of maximum length and disjoint cycles, as well as the implications of overlapping cycles on the results discussed.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

1. Let $1\leq n\in \mathbb{N}$ and $\pi\in \text{Sym}(n)$. For $1\leq k\in \mathbb{N}$ we define $\pi^{-k}:=\left (\pi^n\right )^{-1}$.

Show for all $k,\ell\in \mathbb{Z}$ the equation $\pi^k\circ \pi^{\ell}=\pi^{k+\ell}$. 2. Let $1\leq n\in \mathbb{N}$. Show that $\pi^{n!}=\text{id}$ for all $\pi\in \text{Sym}(n)$.
Do we show both statements using induction? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

1. Let $1\leq n\in \mathbb{N}$ and $\pi\in \text{Sym}(n)$. For $1\leq k\in \mathbb{N}$ we define $\pi^{-k}:=\left (\pi^n\right )^{-1}$.

Hey mathmari!

Is that a typo? Shouldn't it be $\pi^{-k}:=\left (\pi^k\right )^{-1}$? (Wondering)

mathmari said:
Show for all $k,\ell\in \mathbb{Z}$ the equation $\pi^k\circ \pi^{\ell}=\pi^{k+\ell}$. 2. Let $1\leq n\in \mathbb{N}$. Show that $\pi^{n!}=\text{id}$ for all $\pi\in \text{Sym}(n)$.
Do we show both statements using induction?

I don't think we need induction for 1.
Instead I think we need to distinguish cases.
If k and l are positive, the relation follows from the definition of repeated application of a function.
However, if either is negative or zero, we still need to see what happens. (Thinking)

For question 2, I think we need group theory. Specifically that the order of an element divides the size of a finite group. Then we don't need induction. (Thinking)
 
I noticed now that the hint for induction is for question 1.

There is the following hint:

$\pi\in \text{Sym}(n)$

$\pi=\pi_1\circ \pi_2\circ \ldots \circ \pi_m$, $m\leq n$

$\pi$ has maximum length $n$

We are looking for $x\in \mathbb{N}$ such that $\pi^x=(\pi_1\circ \pi_2\circ \ldots \circ \pi_m)^x\ \overset{\text{Induction}}{ =} \ \pi_1^x\circ \pi_2^x\circ \ldots \circ \pi_m^x=\text{id}$

For $1\leq i\leq m$ the $\pi_i$ is a cycle of length $m_i$.

It holds that $(\pi_i)^{m_i}=\text{id}$ so $(\pi_i)^{n!}=\text{id}$ .

Then $\pi^{n!}=\pi_1^{n!}\circ \pi_2^{n!}\circ \ldots \circ \pi_m^{n!}=\text{id}\circ \text{id}\circ \ldots \circ \text{id}=\text{id}$.

(Wondering)
 
mathmari said:
I noticed now that the hint for induction is for question 1.

There is the following hint:

$\pi\in \text{Sym}(n)$

$\pi=\pi_1\circ \pi_2\circ \ldots \circ \pi_m$, $m\leq n$

$\pi$ has maximum length $n$

What do you mean by maximum length? (Wondering)

mathmari said:
We are looking for $x\in \mathbb{N}$ such that $\pi^x=(\pi_1\circ \pi_2\circ \ldots \circ \pi_m)^x\ \overset{\text{Induction}}{ =} \ \pi_1^x\circ \pi_2^x\circ \ldots \circ \pi_m^x=\text{id}$

For $1\leq i\leq m$ the $\pi_i$ is a cycle of length $m_i$.

I don't think this is true in general.
Consider for instance $(1) \circ (1\,2) \circ (1\,2\,3) = (2\,3)$ and $x=3$.
Then:
$$\big((1) \circ (1\,2) \circ (1\,2\,3)\big)^3 = (2\,3)^3=(2\,3)
\ne (1\,2)= (1)^3 \circ (1\,2)^3 \circ (1\,2\,3)^3 $$
isn't it? (Worried)

Is it perhaps supposed to be a disjoint decomposition in cycles? (Wondering)

mathmari said:
It holds that $(\pi_i)^{m_i}=\text{id}$ so $(\pi_i)^{n!}=\text{id}$ .

Then $\pi^{n!}=\pi_1^{n!}\circ \pi_2^{n!}\circ \ldots \circ \pi_m^{n!}=\text{id}\circ \text{id}\circ \ldots \circ \text{id}=\text{id}$.
 
Klaas van Aarsen said:
What do you mean by maximum length? (Wondering)

I forgot the index. It should be: The cycle $\pi_i$ has maximum length $n$.
Klaas van Aarsen said:
I don't think this is true in general.
Consider for instance $(1) \circ (1\,2) \circ (1\,2\,3) = (2\,3)$ and $x=3$.
Then:
$$\big((1) \circ (1\,2) \circ (1\,2\,3)\big)^3 = (2\,3)^3=(2\,3)
\ne (1\,2)= (1)^3 \circ (1\,2)^3 \circ (1\,2\,3)^3 $$
isn't it? (Worried)

Is it perhaps supposed to be a disjoint decomposition in cycles? (Wondering)

Ahh ok! So if we suppose that $\pi_i\neq \pi_j$ for $i\neq j$, does the above hold? (Wondering)
 
mathmari said:
I forgot the index. It should be: The cycle $\pi_i$ has maximum length $n$.

Ahh ok! So if we suppose that $\pi_i\neq \pi_j$ for $i\neq j$, does the above hold?

That is not enough, is it?
If any pair $\pi_i$ and $\pi_j$ are cycles that overlap, the result won't hold. (Worried)

However, if the cycles are disjoint, the result does hold.
So if for instance $\pi=(1\,2\,3)(5\,6)$ with $\pi_1=(1\,2\,3)$ and $\pi_2=(5\,6)$, we have for any $x\in\mathbb Z$:
$$\pi^x = \big((1\,2\,3)\circ (5\,6)\big)^x = (1\,2\,3)^x \circ (5\,6)^x$$
Then we have $m=2$ and $m_1=3,\,m_2=2$. (Thinking)
 

Similar threads

  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 26 ·
Replies
26
Views
1K
  • · Replies 52 ·
2
Replies
52
Views
4K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K