I Do electron density waves accompany EM waves in coaxial cables?

  • I
  • Thread starter Thread starter Bob44
  • Start date Start date
Bob44
Messages
5
Reaction score
0
Maxwell’s equations imply the following wave equation for the electric field
$$\nabla^2\mathbf{E}-\frac{1}{c^2}\frac{\partial^2\mathbf{E}}{\partial t^2}
= \frac{1}{\varepsilon_0}\nabla\rho+\mu_0\frac{\partial\mathbf J}{\partial t}.\tag{1}$$
I wonder if eqn.##(1)## can be split into the following transverse part
$$\nabla^2\mathbf{E}_T-\frac{1}{c^2}\frac{\partial^2\mathbf{E}_T}{\partial t^2}
= \mu_0\frac{\partial\mathbf{J}_T}{\partial t}\tag{2}$$
and longitudinal part
$$\frac{1}{\varepsilon_0}\nabla\rho+\mu_0\frac{\partial\mathbf{J}_L}{\partial t}=0.\tag{3}$$
Taking the divergence of eqn.##(3)## and substituting in the continuity equation ##\nabla \cdot \mathbf{J}_L=-\partial\rho/\partial t## we obtain a wave equation
$$\nabla^2\rho-\frac{1}{c^2}\frac{\partial^2\rho}{\partial t^2}=0.\tag{4}$$
Do these equations describe how transverse EM waves ##(2)## travel down the dielectric in a coaxial cable accompanied by electron density waves ##(4)## in the conductors?
 
Thread 'Gauss' law seems to imply instantaneous electric field'
Imagine a charged sphere at the origin connected through an open switch to a vertical grounded wire. We wish to find an expression for the horizontal component of the electric field at a distance ##\mathbf{r}## from the sphere as it discharges. By using the Lorenz gauge condition: $$\nabla \cdot \mathbf{A} + \frac{1}{c^2}\frac{\partial \phi}{\partial t}=0\tag{1}$$ we find the following retarded solutions to the Maxwell equations If we assume that...
I passed a motorcycle on the highway going the opposite direction. I know I was doing 125/km/h. I estimated that the frequency of his motor dropped by an entire octave, so that's a doubling of the wavelength. My intuition is telling me that's extremely unlikely. I can't actually calculate how fast he was going with just that information, can I? It seems to me, I have to know the absolute frequency of one of those tones, either shifted up or down or unshifted, yes? I tried to mimic the...
Back
Top