Do galaxies have a negative mass defect?

AI Thread Summary
Galaxies exhibit a mass defect that suggests their total mass is less than the sum of their individual constituents, including dark matter, due to their bound nature. This contrasts with quarks, where the strong force leads to increasing potential energy as they are separated, meaning they do not exhibit a mass defect in the same way. In gravitational and electromagnetic systems, bound particles have negative mechanical energy, indicating their total energy is less than the energy stored in mass alone. The concept of potential energy varies between forces, with negative potential energy indicating attraction and positive potential energy indicating repulsion, leading to some confusion in terminology. Understanding these differences is crucial for comprehending the mass defect in galaxies versus quark systems.
kmarinas86
Messages
974
Reaction score
1
http://en.wikipedia.org/wiki/Binding_energy#Mass_Defect

Wikipedia:Binding Energy said:
Because a bound system is at a lower energy level than its unbound constituents, its mass must be less than the total mass of its unbound constituents.

But the opposite is true for galaxies! Quarks too! Their mass appears to be larger than their constituents as well...
 
Astronomy news on Phys.org
In the case of galaxies, you have to consider the masses of all the constituents - including the dark matter. If you were to do that (which, of course isn't really possible until we know more about the nature of dark matter), you should find that the total mass of the galaxy is less than the masses of everything in it combined.

With quarks, however, things are a bit more complicated. The nature of the strong force between the quarks is that the farther apart they are moved, the greater their potential energy becomes without limit.

In gravitationally and electromagnetically bound systems, the potential energy is always negative and increases to 0 as objects are moved progressively farther away. A system being bound means, quite simply, that the particles do not have enough energy to the point where their separation is infinite. In other words, their total mechanical energy must be smaller than the potential energy of two particles an infinite distance apart. So, in gravity and E&M, bound systems must have negative mechanical energy. Since mass and energy are interchangable, negative mechanical energy means that the total energy (mass plus mechanical) is less than the energy just stored in mass.

By this discussion, we see that the existence of the mass defect requires that the potential energy be 0 at infinity. Going back to the strong force, I said above that it is a case where potential energy increases without bound. In other words, the potential energy from two quarks separated by an infinite distance is infinite. In other words, any system of quarks, no matter how much energy it has of any sort, is a bound system. So, because of the very different nature of this strong potential, the mass defect does not apply.
 
Parlyne said:
In the case of galaxies, you have to consider the masses of all the constituents - including the dark matter. If you were to do that (which, of course isn't really possible until we know more about the nature of dark matter), you should find that the total mass of the galaxy is less than the masses of everything in it combined.

With quarks, however, things are a bit more complicated. The nature of the strong force between the quarks is that the farther apart they are moved, the greater their potential energy becomes without limit.

In gravitationally and electromagnetically bound systems, the potential energy is always negative and increases to 0 as objects are moved progressively farther away. A system being bound means, quite simply, that the particles do not have enough energy to the point where their separation is infinite. In other words, their total mechanical energy must be smaller than the potential energy of two particles an infinite distance apart. So, in gravity and E&M, bound systems must have negative mechanical energy. Since mass and energy are interchangable, negative mechanical energy means that the total energy (mass plus mechanical) is less than the energy just stored in mass.

By this discussion, we see that the existence of the mass defect requires that the potential energy be 0 at infinity. Going back to the strong force, I said above that it is a case where potential energy increases without bound. In other words, the potential energy from two quarks separated by an infinite distance is infinite. In other words, any system of quarks, no matter how much energy it has of any sort, is a bound system. So, because of the very different nature of this strong potential, the mass defect does not apply.

For the fundamental forces of gravity, electromagnetism, and the strong force, what exactly is it meant by a positive potential energy vs. negative potential energy? I thought negative potential energy represents attraction and positive potential energy (in the case of proton repulsion) represented repulsion. But apparently, when I look at the Cornell potential, http://72.14.203.104/search?q=cache...f+"cornell+potential&hl=en&gl=us&ct=clnk&cd=1 (with a negative sign for repulsion and positive sign for attraction). Why is it spoken like this?
 
Last edited by a moderator:
TL;DR Summary: In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect alien signals, it will further expand the radius of the so-called silence (or rather, radio silence) of the Universe. Is there any sense in this or is blissful ignorance better? In 3 years, the Square Kilometre Array (SKA) telescope (or rather, a system of telescopes) should be put into operation. In case of failure to detect...
Thread 'Could gamma-ray bursts have an intragalactic origin?'
This is indirectly evidenced by a map of the distribution of gamma-ray bursts in the night sky, made in the form of an elongated globe. And also the weakening of gamma radiation by the disk and the center of the Milky Way, which leads to anisotropy in the possibilities of observing gamma-ray bursts. My line of reasoning is as follows: 1. Gamma radiation should be absorbed to some extent by dust and other components of the interstellar medium. As a result, with an extragalactic origin, fewer...
This thread is dedicated to the beauty and awesomeness of our Universe. If you feel like it, please share video clips and photos (or nice animations) of space and objects in space in this thread. Your posts, clips and photos may by all means include scientific information; that does not make it less beautiful to me (n.b. the posts must of course comply with the PF guidelines, i.e. regarding science, only mainstream science is allowed, fringe/pseudoscience is not allowed). n.b. I start this...
Back
Top