AxiomOfChoice
- 531
- 1
If a and b are positive and a < b, do we have
<br /> (0 < x < 1) \Rightarrow \frac{1}{x^b} > \frac{1}{x^a}<br />
and
<br /> (1 < x < \infty) \Rightarrow \frac{1}{x^a} > \frac{1}{x^b}<br />
?
<br /> (0 < x < 1) \Rightarrow \frac{1}{x^b} > \frac{1}{x^a}<br />
and
<br /> (1 < x < \infty) \Rightarrow \frac{1}{x^a} > \frac{1}{x^b}<br />
?
Last edited: