MHB Do Intervals [0, 2) and [5, 6) U [7, 8) Have the Same Cardinality?

KOO
Messages
19
Reaction score
0
Prove that the interval A = [0 , 2) has the same cardinality as the set B = [5 , 6) U [7 , 8) by constructing a bijection between the two sets

Attempt:

x ↦ x + 5 for x ∈ [0 ; 1)
x ↦ x + 6 for x ∈ [1 ; 2)

What to do next?
 
Physics news on Phys.org
KOO said:
What to do next?

Prove that $f:[0,2)\to [5\color{red},\color{\black}6)\cup [7,8)$
$$f(x)=\left \{ \begin{matrix} x+5& \mbox{ if }& x\in [0,1)\\x+6 & \mbox{ if }&x\in [1\color{red},\color{\black}2)\end{matrix}\right.$$
is injective and surjective.
 
Last edited:
Fernando Revilla said:
Prove that $f:[0,2)\to [5.6)\cup [7,8)$
$$f(x)=\left \{ \begin{matrix} x+5& \mbox{ if }& x\in [0,1)\\x+6 & \mbox{ if }&x\in [1.2)\end{matrix}\right.$$
is injective and surjective.
Did you mean [5,6) and not [5.6)?

Also, [1,2) and not [1.2)?

Thanks!
 
KOO said:
Did you mean [5,6) and not [5.6)?
Also, [1,2) and not [1.2)?

Of course, my fingers were clumsy. :)
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top