MHB Do Intervals [0, 2) and [5, 6) U [7, 8) Have the Same Cardinality?

KOO
Messages
19
Reaction score
0
Prove that the interval A = [0 , 2) has the same cardinality as the set B = [5 , 6) U [7 , 8) by constructing a bijection between the two sets

Attempt:

x ↦ x + 5 for x ∈ [0 ; 1)
x ↦ x + 6 for x ∈ [1 ; 2)

What to do next?
 
Physics news on Phys.org
KOO said:
What to do next?

Prove that $f:[0,2)\to [5\color{red},\color{\black}6)\cup [7,8)$
$$f(x)=\left \{ \begin{matrix} x+5& \mbox{ if }& x\in [0,1)\\x+6 & \mbox{ if }&x\in [1\color{red},\color{\black}2)\end{matrix}\right.$$
is injective and surjective.
 
Last edited:
Fernando Revilla said:
Prove that $f:[0,2)\to [5.6)\cup [7,8)$
$$f(x)=\left \{ \begin{matrix} x+5& \mbox{ if }& x\in [0,1)\\x+6 & \mbox{ if }&x\in [1.2)\end{matrix}\right.$$
is injective and surjective.
Did you mean [5,6) and not [5.6)?

Also, [1,2) and not [1.2)?

Thanks!
 
KOO said:
Did you mean [5,6) and not [5.6)?
Also, [1,2) and not [1.2)?

Of course, my fingers were clumsy. :)
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top