Do Non-Associative Groups Exist and What Are Their Applications?

  • Thread starter Thread starter Winzer
  • Start date Start date
  • Tags Tags
    Groups
Winzer
Messages
597
Reaction score
0
Do they exist? What are some examples? Are there any applications?
What are some good books on the topic?
 
Physics news on Phys.org
Google gives a few articles though they appear fairly advanced.
 
Last edited:
A group's operation is associative by definition. If you take out the associativity axiom, you get what's (apparently) called a loop. If you also remove the need for an identity, you get a quasigroup. This page on Wikipedia has a nice little table of what you call groups minus this or that axiom.

The nonzero octonions under multiplication form a loop. They are an example of the best you can do if you want to reasonably define multiplication on an 8-dimensional vector space over the reals. (The complex numbers are the best you can do in 2-dimensions. There you get everything you could want out of multiplication: it commutes, it associates, it has an inverse. In 4-dimensions you can form the quaternions, but you lose commutativity. In 8-dimensions you also have to lose associativity, and what you get are called octonions.)

As far as applications go, apparently they may be quite important in string theory (as far as you can call string theory applicable to anything.)
 
Thank you for your responses.
This is something I have been thinking about for a long time-- and have gotten nowhere with.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top