Do We Assume Logic for Mathematics?

  • Thread starter Thread starter V0ODO0CH1LD
  • Start date Start date
  • Tags Tags
    Logic
V0ODO0CH1LD
Messages
278
Reaction score
0
do we assume "logic"?

Mathematics has no foundations on reality, it stands on its own. But to construct it we have to assume a number of axioms, like if I wanted to create a "science" where the only rules are all circles are red and all squares are blue, then from that we can build theories and prove them from the assumed axioms, like a particular square has to be blue because all squares are blue, right?

However, if the defining rules of my "science" are contradictory, like all circles are red and all circles are blue, then my "science" is "ill defined".

But what indicates that? If the cornerstones of mathematics have to be "logical", not in the sense of mathematical logic or propositional logic per se but in the sense that they have to be "well defined", does that mean that we are assuming a set of implicit primordial rules that the rest of mathematics have to abide to?

If even the most basic laws of mathematics have to be "logical", does that mean that we are assuming a set of rules that dictate whether something is logical or not? And could these rules be "logical" if they define logic? In other words, can they abide by their own rules? Is that even possible?
 
Mathematics news on Phys.org
The short answer to your question is ... yes, most working mathematicians do their work with under the assumption that ZFC (the "math world" in which 99% of them work) is consistent (there are no contradictions) and complete (everything that is true is also provable and vice versa).

You should look into topics such as Godel's Incompleteness Theorem, metamathematics, and philosophy of math for the beginnings of the long answer to your concerns.
 
However, just as we can work in many different sets of axioms, getting different mathematical "stuctures" so we can work in different "logics", ZFC or not. And just as we have to specify what axioms we are using, we have to specify what logic.
 
gopher_p said:
The short answer to your question is ... yes, most working mathematicians do their work with under the assumption that ZFC (the "math world" in which 99% of them work) is consistent (there are no contradictions) and complete (everything that is true is also provable and vice versa).

ZFC has been proven to be incomplete. The continuum hypothesis for example cannot be proven.

Most mathematicians do believe that ZFC is consistent. But this can never be proven. In fact, whether ZFC is consistent is totally irrelevant to most. If it were inconsistent, we would find a new axiom system and formulate all of our mathematics in there. Most mathematicians wouldn't even notice anything changed.
 
R136a1 said:
ZFC has been proven to be incomplete.

This is assuming Con(ZFC) of course :-p

Most mathematicians do believe that ZFC is consistent. But this can never be proven.

Assuming Con(ZFC) then yes ZFC cannot prove its own consistency. This is technically different from not being provable altogether since you could hypothetically move to another set theoretic universe where you can prove consistency. Results of this nature are actually of some interest. For example PA is unable to prove its own consistency yet we have results like this: http://en.wikipedia.org/wiki/Gentzen's_consistency_proof
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top