Agerhell
- 157
- 2
zonde said:But can it really escape? Photons going in outward direction are redshifted but photons going inward are blueshifted. So it seems that inside of the body can not really cool down.
Of course photons will escape from surface of the body but then there are photons coming from the rest of the universe that would be highly blushifted.
I find your temperature discussion interesting. If we assume that we have an extremely dense planet such as that light originating from the surface of that body is redshifted by a factor of two (twice as long wavelenghts) as compared to light originating from a place were the gravitational effects are miniscule. What actually would happen is that people living on the surface of that planet will think that the temperature of the universe is not 2.7 Kelvin but 5.4 Kelvin. This as all electromagnetic waves from space will appear blueshifted by a factor of two which as Wien's displacement law shows will make the people on the planet think the temperature is twice as high. Do note that even if the light appears blueshifted on the surface of the planet it will not magically gain any energy from somewhere traveling down to the planet.
So the people on the planet will measure their temperature as 5.4 Kelvin, in thermal balance with the cosmic background radiation, but as the thermal radiation from the planet reaches a distant observer the observer will think that the planets surface temperature is only 2.7 Kelvin, in balance with the cosmic background radiation, because of the redshift. So both the distant observer and the planets inhibitants will think that the planet has the same temperature as the cosmic backgrund radiation, however they will disagree on the temperature of the cosmic background. Was this what you were wondering?
There are some problems with this explanation. For instance Stefan-Boltsmanns law states that the radiated power should go as the temperature to the power of four... That means that the people at the surface of the planet, that measures their temperature as 5.4 Kelvin would expect them to radiate 16 times as much energy then if the temperature had been 2.7 Kelvin. If the Stefan-Boltzmanns law holds for the people on the planet then the distant observer should be surprised that the planet radiates 8 times as much energy as a black-bodyradiator at 2.7 Kelvin should... Hmmm now I am somewhat confused...