Does (ab)^n Always Equal a^n*b^n in an Abelian Group?

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
Click For Summary
SUMMARY

The discussion confirms that for a multiplicative abelian group \( G \), the equation \((a \cdot b)^n = a^n \cdot b^n\) holds for all integers \( n \). The proof utilizes mathematical induction, demonstrating the base case for \( n=1 \) and extending the argument to negative integers and zero. The final conclusion asserts that the relation is valid for all \( n \in \mathbb{Z} \), including \( n \leq 0 \) and \( n = 0 \).

PREREQUISITES
  • Understanding of abelian groups in abstract algebra
  • Familiarity with mathematical induction techniques
  • Knowledge of properties of exponents in group theory
  • Basic comprehension of multiplicative notation in algebra
NEXT STEPS
  • Study the properties of abelian groups in depth
  • Learn advanced techniques in mathematical induction
  • Explore the implications of group theory in other mathematical fields
  • Investigate the role of exponents in various algebraic structures
USEFUL FOR

Mathematicians, students of abstract algebra, and anyone interested in group theory and its applications will benefit from this discussion.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Let $G$ a multiplicative abelian group. Show with induction that for each positive integer $n$, $(a \cdot b)^n=a^n \cdot b^n, \forall a,b \in G$. Then,show that the same relation stands for $n \leq 0$.

That's what I have tried:

For $n=1$: $(a \cdot b)^1=a^1 \cdot b^1 \checkmark$

Suppose that the relation stands for $n=k$, $(a \cdot b)^k=a^k \cdot b^k$

We want to show that the relation stand for $n=k+1$.
$$(a \cdot b)^{k+1}=a^{k+1} \cdot b^{k+1} \Rightarrow (a \cdot b)^{k} \cdot (a \cdot b)=a^k \cdot a \cdot b^k \cdot b \Rightarrow a^k \cdot b^k \cdot a \cdot b= a^k \cdot a \cdot b^k \cdot b \Rightarrow b^k \cdot a= a \cdot b^k \Rightarrow a \cdot b^k=a \cdot b^k \checkmark $$

Now we have shown that $(a \cdot b)^n=a^n \cdot b^n, n \in \mathbb{Z}^{+} $

For $n \leq 0$: $n=-k, k\in \mathbb{Z}^{+}$
$$(a \cdot b)^n=a^n \cdot b^n \Rightarrow (a \cdot b)^{-k}=a^{-k} \cdot b^{-k} \Rightarrow ((a \cdot b)^{-1})^{k}=(a^{-1} \cdot b^{-1})^{k} \Rightarrow (b^{-1} \cdot a^{-1})^{k}=(a^{-1} \cdot b^{-1})^{k} \Rightarrow (b^{-1})^k \cdot (a^{-1})^k= (a^{-1})^k \cdot (b^{-1})^k \Rightarrow (a^{-1})^k \cdot (b^{-1})^k=(a^{-1})^k \cdot (b^{-1})^k \checkmark$$

For $n=0$: $(a \cdot b)^0=a^0 \cdot b^0 \Rightarrow 1=1 \checkmark$

Could you tell me if it is right?? :confused:
 
Physics news on Phys.org
evinda said:
Hello! (Wave)

Let $G$ a multiplicative abelian group. Show with induction that for each positive integer $n$, $(a \cdot b)^n=a^n \cdot b^n, \forall a,b \in G$. Then,show that the same relation stands for $n \leq 0$.

That's what I have tried:

For $n=1$: $(a \cdot b)^1=a^1 \cdot b^1 \checkmark$

Suppose that the relation stands for $n=k$, $(a \cdot b)^k=a^k \cdot b^k$

We want to show that the relation stand for $n=k+1$.
$$(a \cdot b)^{k+1}=a^{k+1} \cdot b^{k+1} \Rightarrow (a \cdot b)^{k} \cdot (a \cdot b)=a^k \cdot a \cdot b^k \cdot b \Rightarrow a^k \cdot b^k \cdot a \cdot b= a^k \cdot a \cdot b^k \cdot b \Rightarrow b^k \cdot a= a \cdot b^k \Rightarrow a \cdot b^k=a \cdot b^k \checkmark $$

This is confusing. Your first statement, $(ab)^{k+1}=a^{k+1}b^{k+1}$, is what you're trying to prove! You can't start with that. Perhaps you should reverse the direction of your arrows? I think you could - your steps seem reversible to me.

Now we have shown that $(a \cdot b)^n=a^n \cdot b^n, n \in \mathbb{Z}^{+} $

For $n \leq 0$: $n=-k, k\in \mathbb{Z}^{+}$
$$(a \cdot b)^n=a^n \cdot b^n \Rightarrow (a \cdot b)^{-k}=a^{-k} \cdot b^{-k} \Rightarrow ((a \cdot b)^{-1})^{k}=(a^{-1} \cdot b^{-1})^{k} \Rightarrow (b^{-1} \cdot a^{-1})^{k}=(a^{-1} \cdot b^{-1})^{k} \Rightarrow (b^{-1})^k \cdot (a^{-1})^k= (a^{-1})^k \cdot (b^{-1})^k \Rightarrow (a^{-1})^k \cdot (b^{-1})^k=(a^{-1})^k \cdot (b^{-1})^k \checkmark$$

For $n=0$: $(a \cdot b)^0=a^0 \cdot b^0 \Rightarrow 1=1 \checkmark$

Could you tell me if it is right?? :confused:

The way you're writing this is not easy to follow. Put one step on one line. Or just do one long equality.

We have that $(ab)^{-1}=b^{-1}a^{-1}=a^{-1}b^{-1}$, giving the base case. Assume the result is true for $-k$, where $k\in\mathbb{Z}^{+}$. That is, assume $(ab)^{-k}=a^{-k}b^{-k}$. Then
\begin{align*}
(ab)^{-(k+1)}&=((ab)^{k+1})^{-1} \\
&=((ab)^k(ab))^{-1} \\
&=(ab)^{-1}(a^kb^k)^{-1} \\
&=b^{-1}a^{-1}(b^k)^{-1}(a^k)^{-1} \\
&=a^{-1}a^{-k}b^{-1}b^{-k} \\
&=a^{-(k+1)}b^{-(k+1)},
\end{align*}
as required.
 

Similar threads

  • · Replies 26 ·
Replies
26
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 0 ·
Replies
0
Views
993
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
4K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K