MHB Does (ab)^n Always Equal a^n*b^n in an Abelian Group?

  • Thread starter Thread starter evinda
  • Start date Start date
Click For Summary
The discussion focuses on proving that in a multiplicative abelian group, the equation (ab)^n = a^n * b^n holds for all integers n. The proof is initiated using mathematical induction, starting with the base case for n=1, and then assuming it holds for n=k to show it also holds for n=k+1. The participants clarify the proof structure, emphasizing the need to avoid circular reasoning and suggesting clearer notation for better understanding. The discussion also extends the proof to negative integers and zero, confirming the validity of the equation across all integer values. The overall conclusion is that the relation is indeed correct for all integers n.
evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Let $G$ a multiplicative abelian group. Show with induction that for each positive integer $n$, $(a \cdot b)^n=a^n \cdot b^n, \forall a,b \in G$. Then,show that the same relation stands for $n \leq 0$.

That's what I have tried:

For $n=1$: $(a \cdot b)^1=a^1 \cdot b^1 \checkmark$

Suppose that the relation stands for $n=k$, $(a \cdot b)^k=a^k \cdot b^k$

We want to show that the relation stand for $n=k+1$.
$$(a \cdot b)^{k+1}=a^{k+1} \cdot b^{k+1} \Rightarrow (a \cdot b)^{k} \cdot (a \cdot b)=a^k \cdot a \cdot b^k \cdot b \Rightarrow a^k \cdot b^k \cdot a \cdot b= a^k \cdot a \cdot b^k \cdot b \Rightarrow b^k \cdot a= a \cdot b^k \Rightarrow a \cdot b^k=a \cdot b^k \checkmark $$

Now we have shown that $(a \cdot b)^n=a^n \cdot b^n, n \in \mathbb{Z}^{+} $

For $n \leq 0$: $n=-k, k\in \mathbb{Z}^{+}$
$$(a \cdot b)^n=a^n \cdot b^n \Rightarrow (a \cdot b)^{-k}=a^{-k} \cdot b^{-k} \Rightarrow ((a \cdot b)^{-1})^{k}=(a^{-1} \cdot b^{-1})^{k} \Rightarrow (b^{-1} \cdot a^{-1})^{k}=(a^{-1} \cdot b^{-1})^{k} \Rightarrow (b^{-1})^k \cdot (a^{-1})^k= (a^{-1})^k \cdot (b^{-1})^k \Rightarrow (a^{-1})^k \cdot (b^{-1})^k=(a^{-1})^k \cdot (b^{-1})^k \checkmark$$

For $n=0$: $(a \cdot b)^0=a^0 \cdot b^0 \Rightarrow 1=1 \checkmark$

Could you tell me if it is right?? :confused:
 
Physics news on Phys.org
evinda said:
Hello! (Wave)

Let $G$ a multiplicative abelian group. Show with induction that for each positive integer $n$, $(a \cdot b)^n=a^n \cdot b^n, \forall a,b \in G$. Then,show that the same relation stands for $n \leq 0$.

That's what I have tried:

For $n=1$: $(a \cdot b)^1=a^1 \cdot b^1 \checkmark$

Suppose that the relation stands for $n=k$, $(a \cdot b)^k=a^k \cdot b^k$

We want to show that the relation stand for $n=k+1$.
$$(a \cdot b)^{k+1}=a^{k+1} \cdot b^{k+1} \Rightarrow (a \cdot b)^{k} \cdot (a \cdot b)=a^k \cdot a \cdot b^k \cdot b \Rightarrow a^k \cdot b^k \cdot a \cdot b= a^k \cdot a \cdot b^k \cdot b \Rightarrow b^k \cdot a= a \cdot b^k \Rightarrow a \cdot b^k=a \cdot b^k \checkmark $$

This is confusing. Your first statement, $(ab)^{k+1}=a^{k+1}b^{k+1}$, is what you're trying to prove! You can't start with that. Perhaps you should reverse the direction of your arrows? I think you could - your steps seem reversible to me.

Now we have shown that $(a \cdot b)^n=a^n \cdot b^n, n \in \mathbb{Z}^{+} $

For $n \leq 0$: $n=-k, k\in \mathbb{Z}^{+}$
$$(a \cdot b)^n=a^n \cdot b^n \Rightarrow (a \cdot b)^{-k}=a^{-k} \cdot b^{-k} \Rightarrow ((a \cdot b)^{-1})^{k}=(a^{-1} \cdot b^{-1})^{k} \Rightarrow (b^{-1} \cdot a^{-1})^{k}=(a^{-1} \cdot b^{-1})^{k} \Rightarrow (b^{-1})^k \cdot (a^{-1})^k= (a^{-1})^k \cdot (b^{-1})^k \Rightarrow (a^{-1})^k \cdot (b^{-1})^k=(a^{-1})^k \cdot (b^{-1})^k \checkmark$$

For $n=0$: $(a \cdot b)^0=a^0 \cdot b^0 \Rightarrow 1=1 \checkmark$

Could you tell me if it is right?? :confused:

The way you're writing this is not easy to follow. Put one step on one line. Or just do one long equality.

We have that $(ab)^{-1}=b^{-1}a^{-1}=a^{-1}b^{-1}$, giving the base case. Assume the result is true for $-k$, where $k\in\mathbb{Z}^{+}$. That is, assume $(ab)^{-k}=a^{-k}b^{-k}$. Then
\begin{align*}
(ab)^{-(k+1)}&=((ab)^{k+1})^{-1} \\
&=((ab)^k(ab))^{-1} \\
&=(ab)^{-1}(a^kb^k)^{-1} \\
&=b^{-1}a^{-1}(b^k)^{-1}(a^k)^{-1} \\
&=a^{-1}a^{-k}b^{-1}b^{-k} \\
&=a^{-(k+1)}b^{-(k+1)},
\end{align*}
as required.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 26 ·
Replies
26
Views
847
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 15 ·
Replies
15
Views
1K
  • · Replies 0 ·
Replies
0
Views
834
  • · Replies 23 ·
Replies
23
Views
2K
  • · Replies 52 ·
2
Replies
52
Views
4K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K