Does an electron with negative electrostatic potential energy fall up?

AI Thread Summary
In a vacuum, an electron emitted from a positively charged electrode experiences no electrostatic force as it falls through the center of a spherical electrode. The discussion centers on whether gravity will cause the electron to strike above or below a designated mark, with two main viewpoints: one suggesting gravity pulls the electrode down, affecting the electrostatic field, and the other asserting that gravity only influences the electron's trajectory. The conversation also touches on the conservation of momentum and energy within the system, noting that as the electron accelerates, it emits electromagnetic radiation, which alters the total energy of the system. The concept of mass reduction in bound systems is introduced, comparing it to the mass of bound atoms. Ultimately, the conclusion leans towards the idea that gravity will pull the electron upward, leading to a strike above the mark.
Wnt
Messages
1
Reaction score
0
In a vacuum under standard gravity, an anchored spherical metal electrode is brought to +1,000,000 volts relative to the distant walls of a much larger chamber. (I'm a new user; hopefully this will display as attachment 1) Therefore, electrons that fall through a small gap in the electrode potentially emit kinetic energy greater than their 0.5 MeV rest mass. This energy comes from the electrostatic field that surrounds the spherical electrode (red haze; the energy in this field is proportional to the square of the magnitude of the force outward from the electrode, which is reduced by the negative charge of the electron inside). Within the sphere, there is no electrostatic field except that from the electron itself (green haze).

In this scenario, an electron is emitted from just outside the positive electrode so that it falls slowly through the center of the sphere, where it should experience no force from the shell of positive charge that surrounds it. The question is, as it crosses the chamber, will it strike ABOVE or BELOW the mark?

a) Gravity will pull the electrode downward according to its normal rest mass, like any particle; it is a curvature of space. As a consequence, it will force the center of mass of the electrostatic field in red to move upward.
b) Gravity will pull the electrostatic field downward, forcing the electron to move upward and strike above the mark.

And of course there's always c) you can tell me it's far, far more complicated than that. :)
 

Attachments

  • electronriddle.jpg
    electronriddle.jpg
    14.8 KB · Views: 544
Physics news on Phys.org
a.
Since there is no field in the electrode (other than the electron itself), the only force acting on the electron is gravity. The complicated setup is irrelevant here.

Potential is just some kind of bookkeeping system and isn't as real as the fields.
 
So, you probably are wondering about the mass of the entire system. If the total mass of the exterior walls and electrode is M, and the mass of the electron is m_e, then what if you drop the electron from the exterior wall to the electrode. Assume the exterior walls are anchored to the electrode. Then the electron gains a large momentum toward the right, and the walls+electrode gain an equal momentum to the left. The total system has zero momentum, and the total energy must be conserved. Since the total momentum is zero, the total energy is ##E=(M+m_e)c^2##.

Ok, now for some fun. As the electron accelerates toward the center, it emits some EM radiation. The rest of the system also accelerates a little and emits some radiation. Now what happens? Clearly, if the EM radiation leaves the system, the total energy of the system must now be less than (M+m_e)c^2. This is possible because the density of the electromagnetic field is decreased slightly. ##E_{EM}=\frac{1}{2}\epsilon E^2 + \frac{1}{2\mu} B^2##.

Ok, so where is this electromagnetic field mass actually located? Since the energy is lower than before, the new mass must be lower than (M+m_e). But how? For the same reason a bound atom weighs a little less than the nucleus + electrons. I don't think it's possible to divide the mass of the bound system among the constituent particles, since the constituent particles no longer exist as solo objects once they are bound.

I still say a is correct for above despite this complication.
 
Thread 'Motional EMF in Faraday disc, co-rotating magnet axial mean flux'
So here is the motional EMF formula. Now I understand the standard Faraday paradox that an axis symmetric field source (like a speaker motor ring magnet) has a magnetic field that is frame invariant under rotation around axis of symmetry. The field is static whether you rotate the magnet or not. So far so good. What puzzles me is this , there is a term average magnetic flux or "azimuthal mean" , this term describes the average magnetic field through the area swept by the rotating Faraday...
Back
Top