A Does centering variables for regression always result in unchanged coefficients?

  • A
  • Thread starter Thread starter monsmatglad
  • Start date Start date
  • Tags Tags
    interaction ols
monsmatglad
Messages
75
Reaction score
0
I am studying mean-centering for multiple linear regression (ols).
Specifically I'm talking about the situation when there is interaction.
When centering variables for a regression analysis, my literature tells me that the coefficients do not change? But when there is some sort of interaction between the variables, the coefficients of the non-interaction terms (the variables that take part in the interaction, but are also represented individually) of the variables do in fact change.

When it is said that when centering the variables, "the coefficients do not change", does that only apply to the non-integrated variables?
 
Physics news on Phys.org
monsmatglad said:
When it is said that when centering the variables, "the coefficients do not change", does that only apply to the non-integrated variables?
What do you mean by 'non-integrated variables'?
 
oops.. Was supposed to be "non-interaction"
 
In that case, yes. Consider the model
$$y_j = a_0 + a_1x_1 + a_2x_2 +a_12x_1x_2 + a_3 x_3+\epsilon_j$$
in which there is an interaction of $x_1,x_2$ but no interactions for $x_3$.
Now centring each variable we get
$$y_j = a'_0 + a'_1(x_1-\bar x_1) + a'_2(x_2-\bar x_2) +a'_{12}(x_1-\bar x_1)(x_2-\bar x_2) + a'_3 (x_3-\bar x_3)+\epsilon_j$$
Rearranging this and matching coefficients to the first equation, we get:
  • ##a_0=a'_0-a'_1\bar x_1-a'_2\bar x_2-a'_3\bar x_3 +a'_12\bar x_1\bar x_2##
  • ##a_1=a'_1 - a'_{12}\bar x_2##
  • ##a_2=a'_2 - a'_{12}\bar x_1##
  • ##a_3=a'_3## [no change]
  • ##a_{12}=a'_{12}## [no change]
So the only coefficients that remain unchanged are those of any variables with no interactions, plus those of any interaction terms.
 
I think this is just a property of linearity, which I believe is equivalent with a lack of interaction between variables, i.e., linearity "preserves translation" , but non-linear interactions do not.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top