compwiz3000
- 17
- 0
When I do some physics derivation, I find that on a seesaw, if the object is farther away from the fulcrum, the angular acceleration decreases. Is this true? If not, where did I go wrong?
\tau = I \cdot \alpha
\tau=F \cdot r
Then, \alpha = \frac{F \cdot r}{I} = \frac{F_g \cdot r}{mr^2}=\frac{g \cdot m \cdot r}{mr^2}=\frac{g}{r}, so if the distance "r" increases, angular acceleration decreases...did I do something wrong?
\tau = I \cdot \alpha
\tau=F \cdot r
Then, \alpha = \frac{F \cdot r}{I} = \frac{F_g \cdot r}{mr^2}=\frac{g \cdot m \cdot r}{mr^2}=\frac{g}{r}, so if the distance "r" increases, angular acceleration decreases...did I do something wrong?
Last edited: