Does every element of order 2 in a finite group have a complement in the group?

  • Thread starter Thread starter moont14263
  • Start date Start date
  • Tags Tags
    Subgroup
moont14263
Messages
40
Reaction score
0
Let G be a finite group. Suppose that every element of order 2 of G has a complement in G, then G has no element of order 4.

Proof. Let x be an element of G of order 4. By hypothesis, G=<x^{2}> K and < x^{2}> \capK=1 for some subgroup K of G. Clearly, G=< x> K and < x>\cap K=1$, but |G|=|< x^{2}>||K|<|< x >||K|=|G|, a contradiction. Therefore G has no element of order 4.

Is above true? Thanks in advance.
 
Physics news on Phys.org
It looks right to me, but to understand your last inequality I had to look up and verify the fact that the order of a product is the product of the orders divided by the order of the intersection. So I'd recommend putting that in there. My algebra prof recommended writing proofs so that someone 3 weeks behind could understand.
 
Notice that |HK|=\frac{|H||K|}{|H\cap K|}, for any subgroups H and K of G. Sorry, I could not add it there, but thank you very much.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top