The above link seems to be someone's personal theory posted to another physics discussion site, rather than any reference to a textbook or a peer reviewed paper. The moderators at that other science site had had a similar reaction to the moderators at our site when what appears to be a speculative personal theory is posted. They ask for references. Acceptable references were not provided, and the thread was closed.
However, some useful remarks about gravity and the speed of light can be made.
The SI defintion of the meter is
https://physics.nist.gov/cuu/Units/meter.html
While this is a website reference, the website in question is the national institute of standards, NIST, so it's a reasonably high quality reference. Thus if one uses a standard meter stick, in a vacuum, light will always take 1 / 299792458 of a second to transverse said meter stick, regardless of "gravity".
Gravity was not specifically discussed, alas, but the definition of the meter makes no mention of gravity. In general, the meter is usually defined in the above matter unless otherwise stated. If it is defined in this manner, it's independent of gravity or (more to the point) gravitational potential.
Basically, nowadays the speed of light is used as a reference, because we are confident it doesn't change. It's no longer measured. In a historical context, before the current defintion of the meter was adopted, the speed of light was measured, in terms of the standards used at the time, based on copies of a physical artefact, a prototype meter bar. Confidence in the constancy of the speed of light eventually became so high that nowadays we use it as part of our reference standard for distances.
There are situations where "the speed of light" is expressed using coordinates that are not evenly spaced as measured by standard rulers , such as Schwarzschild coordiantes. I don't think it's really a good idea to talk about the rate of change of a coordinate as a "speed", but sometimes people do it anyway. So be warned, if you're doing something other than measuring the speed of light in a way that can be referenced to standarrd meter sticks and standard clocks, the above remarks may not apply.
There may be other rare instances where the SI definitions are not used, in such cases similar cautions would apply.