I Does pressure affect the thermal breakdown of water?

Click For Summary
Thermal breakdown (thermolysis) of water requires approximately 3000°C, and pressure significantly influences this process. Increased pressure shifts the equilibrium back toward water formation, complicating the thermolysis. The relationship between pressure and temperature can be analyzed using Gibbs free energy, where higher pressure raises the thermolysis temperature despite unchanged heat components. Real-world inefficiencies in pumps mean that high-pressure thermolysis demands more energy than ambient conditions. Additionally, maintaining the separation of hydrogen and oxygen gases is likely easier at lower pressures.
some bloke
Messages
283
Reaction score
99
TL;DR
see title
As per the title, I'm trying to research how the thermal breakdown (thermolysis) of water works. I gather that you need circa 3000°C to get it to break down, which is a lot, and I'm curious as to how pressure might affect this.

I know that pressure affects the boiling point of water, and as such was concerned that a theoretical device which compresses superheated steam to increase it's temperature might counteract the desired effects of thermolysis by the increase of pressure making the required temperature for thermolysis higher.

I'd appreciate any reading that people can direct me to on this subject, I am contemplating a combination of heat, pressure and electrolysis for breaking down water into hydrogen and oxygen. I don't want to make the mistake of only considering the energy in this!
 
Physics news on Phys.org
some bloke said:
Summary: see title

As per the title, I'm trying to research how the thermal breakdown (thermolysis) of water works. I gather that you need circa 3000°C to get it to break down, which is a lot, and I'm curious as to how pressure might affect this.
Qualitatively, the Le Chatelier`s principle is applicable here. Thermolizing water increase pressure (two water molecules split into one molecule of oxygen and two of hydrogen), therefore increased pressure shift equilibrum back to formation of water.
some bloke said:
I'd appreciate any reading that people can direct me to on this subject, I am contemplating a combination of heat, pressure and electrolysis for breaking down water into hydrogen and oxygen. I don't want to make the mistake of only considering the energy in this!
In detail, effect of pressure is affecting the entropy component ΔS of Gibbs energy , while heat component ΔH is unchanged. Therefore, with increased pressure, your energy expended to reach desired decomposition yield should not change if pump is 100% efficient, but termolizis temperature will increase. To calculate temperature of 50% thermolysis yield, your should solve Gibbs free energy equation ΔH-TΔS=0.

Of course, in real world 100% efficient pumps do not exist, therefore high pressure thermolysis of water will require more energy compared to ambient pressure thermolysis.
 
some bloke said:
Summary: see title

I gather that you need circa 3000°C to get it to break down, which is a lot, and I'm curious as to how pressure might affect this.
How do you separate, and then maintain separation, of the O2 and H2 gas? I would expect that to be easier at low pressure, rather than very high pressure.

Maybe you should look at the ultrasonic resonant cavitation experiments that reach temperatures between 10,000 K and 20,000 K.
https://en.wikipedia.org/wiki/Sonoluminescence
 
Thread 'Why higher speeds need more power if backward force is the same?'
Power = Force v Speed Power of my horse = 104kgx9.81m/s^2 x 0.732m/s = 1HP =746W Force/tension in rope stay the same if horse run at 0.73m/s or at 15m/s, so why then horse need to be more powerfull to pull at higher speed even if backward force at him(rope tension) stay the same? I understand that if I increase weight, it is hrader for horse to pull at higher speed because now is backward force increased, but don't understand why is harder to pull at higher speed if weight(backward force)...

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 16 ·
Replies
16
Views
3K
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
Replies
18
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
7K