Hi, All:(adsbygoogle = window.adsbygoogle || []).push({});

I am trying to see if a_n:={|Sin(n)|}, with n=1,2,... and | . | standard absolute value,

is convergent. I know the set {k.pi}, k=1,2,... is dense in [0,1] (pi is equidistributed mod1) , and we have that Sin(n)=Sin(n+pi), but it seems like {|Sinn|} is dense in [0,1], so that it cannot have a limit (i.e., a unique limit point). Any Ideas?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Does |Sin(n)| Converge?

**Physics Forums | Science Articles, Homework Help, Discussion**