- 10,422
- 1,594
pianoplayer said:I'm inclined to go along with you guys (e.g., Qoo and Chronos) who argue that no radiation is seen by an observer accelerating with the charge. Here's a question: from a purely classical perspective, could one look at the problem as follows. The observer who's accelerating with the charge will see a static electric field -- no time dependence, no retarded potentials, and thus no radiation. Now a guy floating in space sees this accelerating charge move past. From his point of view, the electric field is not static. Could one sit down and do the calculation to show that he sees time-varying (transverse) components of an electric and magnetic field with a non-zero Poynting vector, i.e., EM radiation. If this can be demonstrated, it seems this would settle the argument without resorting to arguments about "fuzzy" particles, etc. Or perhaps it's not this simple.
http://xxx.lanl.gov/abs/gr-qc/0006037
goes through this calculation, though I really have only glanced at it.
To write the Poynting vector at Rindler instant \mbox{\omega_0} for the local observer who is
seated at (Xo, Yo,Zo), we can write everything in the instantaneous rest frame of the
source S at the retarded time and then use the Lorentz boost that transforms this frame
to the instantaneous rest frame of O (at the moment of observation).
They find that an accelerating observer sees only a pure electric field, and hence no Poynting vector.