Does the integral \int^{\infty}_{0} \frac{\log(t) \sin(t) }{t} \, dt converge?

  • Context: MHB 
  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Convergence
Click For Summary
SUMMARY

The integral $$\int^{\infty}_{0} \frac{\log(t) \sin(t) }{t} \, dt$$ converges based on the analysis provided. The integral can be split into two parts: $$\int^{\epsilon}_{0} \frac{\log(t) \sin(t) }{t} \, dt$$ and $$\int^{\infty}_{\epsilon} \frac{\log(t) \sin(t) }{t} \, dt$$. Both parts are shown to converge, with the first part being bounded by $$\int^{\epsilon}_{0} \log(t) dt$$ and the second part evaluated using integration by parts, confirming convergence through the comparison with $$\int^{\infty}_{\epsilon} \frac{1}{t^2} dt$$ and $$\int^{\infty}_{\epsilon} \frac{\sqrt{t}}{t^2} dt$$.

PREREQUISITES
  • Understanding of improper integrals
  • Familiarity with integration by parts
  • Knowledge of logarithmic functions and their properties
  • Basic concepts of convergence in calculus
NEXT STEPS
  • Study the properties of improper integrals in depth
  • Learn advanced techniques of integration by parts
  • Explore the behavior of oscillatory integrals
  • Investigate the convergence criteria for integrals involving logarithmic functions
USEFUL FOR

Mathematicians, calculus students, and anyone interested in the convergence of improper integrals, particularly those involving logarithmic and oscillatory functions.

alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
$$\int^{\infty}_{0} \frac{\log(t) \sin(t) }{t} \, dt$$

Can we say the following :

$$\int^{\infty}_{0} \frac{\log(t) \sin(t) }{t} \, dt=\int^{\epsilon}_{0} \frac{\log(t) \sin(t) }{t} \, dt+\int^{\infty}_{\epsilon} \frac{\log(t) \sin(t) }{t} \, dt$$

1-$$\int^{\epsilon}_{0} \frac{\log(t) \sin(t) }{t} \, dt \leq \int^{\epsilon}_{0} \log(t) dt <\infty$$

2-$$\int^{\infty}_{\epsilon} \frac{\log(t) \sin(t) }{t} \, dt$$

If that is correct , how to check near infinity ?
 
Physics news on Phys.org
If we use integration by parts we get the following

$$\int^{\infty}_{\epsilon} \frac{\log(t)\sin(t) }{t}\,dt=\int^{\infty}_{\epsilon} \frac{\cos(t) }{t^2}\,dt-\int^{\infty}_{\epsilon} \frac{\log(t)\cos(t) }{t^2}\,dt$$

$$\int^{\infty}_{\epsilon} \frac{\cos(t) }{t^2}\,dt \leq \int^{\infty}_{\epsilon} \frac{1 }{t^2}\,dt < \infty$$

$$\int^{\infty}_{\epsilon} \frac{\log(t)\cos(t) }{t^2}\,dt \leq \int^{\infty}_{\epsilon} \frac{\sqrt{t}}{t^2}\,dt < \infty$$

so the integral converges .

What do you think guys ?
 
since $$\frac{\sin(t) }{t} \sim 1$$ near zero

1-$$\int^{\epsilon}_{0} \frac{\log(t) \sin(t) }{t} \, dt \sim \int^{\epsilon}_{0} \log(t) dt <\infty
$$

2-$$\big | \int^{\infty}_{\epsilon} \frac{\cos(t) }{t^2}\,dt \big | \leq \int^{\infty}_{\epsilon} \frac{1 }{t^2}\,dt < \infty$$

3-$$ \big | \int^{\infty}_{\epsilon} \frac{\log(t)\cos(t) }{t^2}\,dt \big | \leq \int^{\infty}_{\epsilon} \frac{\sqrt{t}}{t^2}\,dt < \infty$$
 

Similar threads

  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K