MHB Does the integral \int^{\infty}_{0} \frac{\log(t) \sin(t) }{t} \, dt converge?

  • Thread starter Thread starter alyafey22
  • Start date Start date
  • Tags Tags
    Convergence
alyafey22
Gold Member
MHB
Messages
1,556
Reaction score
2
$$\int^{\infty}_{0} \frac{\log(t) \sin(t) }{t} \, dt$$

Can we say the following :

$$\int^{\infty}_{0} \frac{\log(t) \sin(t) }{t} \, dt=\int^{\epsilon}_{0} \frac{\log(t) \sin(t) }{t} \, dt+\int^{\infty}_{\epsilon} \frac{\log(t) \sin(t) }{t} \, dt$$

1-$$\int^{\epsilon}_{0} \frac{\log(t) \sin(t) }{t} \, dt \leq \int^{\epsilon}_{0} \log(t) dt <\infty$$

2-$$\int^{\infty}_{\epsilon} \frac{\log(t) \sin(t) }{t} \, dt$$

If that is correct , how to check near infinity ?
 
Physics news on Phys.org
If we use integration by parts we get the following

$$\int^{\infty}_{\epsilon} \frac{\log(t)\sin(t) }{t}\,dt=\int^{\infty}_{\epsilon} \frac{\cos(t) }{t^2}\,dt-\int^{\infty}_{\epsilon} \frac{\log(t)\cos(t) }{t^2}\,dt$$

$$\int^{\infty}_{\epsilon} \frac{\cos(t) }{t^2}\,dt \leq \int^{\infty}_{\epsilon} \frac{1 }{t^2}\,dt < \infty$$

$$\int^{\infty}_{\epsilon} \frac{\log(t)\cos(t) }{t^2}\,dt \leq \int^{\infty}_{\epsilon} \frac{\sqrt{t}}{t^2}\,dt < \infty$$

so the integral converges .

What do you think guys ?
 
since $$\frac{\sin(t) }{t} \sim 1$$ near zero

1-$$\int^{\epsilon}_{0} \frac{\log(t) \sin(t) }{t} \, dt \sim \int^{\epsilon}_{0} \log(t) dt <\infty
$$

2-$$\big | \int^{\infty}_{\epsilon} \frac{\cos(t) }{t^2}\,dt \big | \leq \int^{\infty}_{\epsilon} \frac{1 }{t^2}\,dt < \infty$$

3-$$ \big | \int^{\infty}_{\epsilon} \frac{\log(t)\cos(t) }{t^2}\,dt \big | \leq \int^{\infty}_{\epsilon} \frac{\sqrt{t}}{t^2}\,dt < \infty$$
 
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.
Back
Top