Does the Isomorphism Between Field Extensions Determine the Minimal Polynomial?

Click For Summary
SUMMARY

The discussion centers on the relationship between field extensions and minimal polynomials, specifically whether the minimal polynomial of an algebraic element $\alpha_1$ over $F(\alpha_2)$ can be determined from the minimal polynomial of another algebraic element $\alpha_2$ over $F(\alpha_1)$. The isomorphism $\phi:F(\alpha_1)\to F(\alpha_2)$ and its extension $\psi:F(\alpha_1)[x]\to F(\alpha_2)[x]$ are crucial in this analysis. The conclusion drawn is that if $l_1$ is the minimal polynomial of $\alpha_2$ over $F(\alpha_1)$, then the derived polynomial $l_2$ is indeed the minimal polynomial of $\alpha_1$ over $F(\alpha_2)$, contingent upon demonstrating that $l_2(\alpha_1)=0$.

PREREQUISITES
  • Understanding of field extensions and algebraic elements
  • Familiarity with minimal polynomials in abstract algebra
  • Knowledge of isomorphisms in field theory
  • Proficiency in polynomial operations and their implications
NEXT STEPS
  • Study the properties of minimal polynomials in field extensions
  • Learn about the implications of isomorphisms in algebraic structures
  • Explore the concept of algebraic closure and its relevance to minimal polynomials
  • Investigate the relationship between degrees of field extensions and minimal polynomials
USEFUL FOR

Mathematicians, particularly those specializing in abstract algebra, graduate students studying field theory, and anyone interested in the properties of minimal polynomials and field extensions.

caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Let $L$ be an extension of a field $F$. Let $\alpha_1, \alpha_2\in L$ be such that both of them are algebraic over $F$ and have the same minimal polynomial $m$ over $F$. We know that there is an isomorphism $\phi:F(\alpha_1)\to F(\alpha_2)$ defined as $\phi(\alpha_1)=\alpha_2$ and $\phi(x)=x$ for all $x\in F$. We can extend $\phi$ to an isomorphism $\psi:F(\alpha_1)[x]\to F(\alpha_2)[x]$ defined as $\psi(\sum_{j=0}^k a_jx^j)=\sum_{j=0}^k \phi(a_j)x^j$. Let $l_1$ be the minimal polynomial of $\alpha_2$ over $F(\alpha_1)$ and define $l_2(x)=\psi(l_1(x))$.

QUESTION: Is is necessarily true that $\alpha_1$ has $l_2$ as its minimal polynomial over $F(\alpha_2)$.

I have some evidence which says that $l_2$ indeed is the minimal polynomial of $\alpha_1$ over $F(\alpha_2)$.

1. Say $l_2^*$ is the minimal polynomial of $\alpha_1$ over $F(\alpha_2)$. Then $[F(\alpha_1,\alpha_2):F(\alpha_2)]=\deg l_2^*$. Which gives $[F(\alpha_1,\alpha_2):F]=\deg l_2^*\cdot\deg m$. Similarly $[F(\alpha_1,\alpha_2):F]=\deg l_1\cdot\deg m$ and we conclude that $\deg l_1=\deg l_2^*$.

2. Since $l_1$ is the minimal polynomial of $\alpha_2$ over $F(\alpha_1)$, we must have that $l_1(x)|m(x)$ in $F(\alpha_1)[x]$. Thus there is an element $q_1(x)\in F(\alpha_1)[x]$ such that $l_1(x)q_1(x)=m(x)$. Operating $\psi$ on both the sides we get $l_2(x)q_2(x)=m(x)$, where $q_2(x)=\psi(q_1(x))$. Now since $m(\alpha_1)=0$, we have $l_2(\alpha_1)q_2(\alpha_1)=0$. If from here we can show that $l_2(\alpha_1)=0$ then we'd be done. But I can't rule out the possibility that $q_2(\alpha_1)=0$.

Can anyone help?
 
Physics news on Phys.org
caffeinemachine said:
Let $L$ be an extension of a field $F$. Let $\alpha_1, \alpha_2\in L$ be such that both of them are algebraic over $F$ and have the same minimal polynomial $m$ over $F$. We know that there is an isomorphism $\phi:F(\alpha_1)\to F(\alpha_2)$ defined as $\phi(\alpha_1)=\alpha_2$ and $\phi(x)=x$ for all $x\in F$. We can extend $\phi$ to an isomorphism $\psi:F(\alpha_1)[x]\to F(\alpha_2)[x]$ defined as $\psi(\sum_{j=0}^k a_jx^j)=\sum_{j=0}^k \phi(a_j)x^j$. Let $l_1$ be the minimal polynomial of $\alpha_2$ over $F(\alpha_1)$ and define $l_2(x)=\psi(l_1(x))$.

QUESTION: Is is necessarily true that $\alpha_1$ has $l_2$ as its minimal polynomial over $F(\alpha_2)$.

I have some evidence which says that $l_2$ indeed is the minimal polynomial of $\alpha_1$ over $F(\alpha_2)$.

1. Say $l_2^*$ is the minimal polynomial of $\alpha_1$ over $F(\alpha_2)$. Then $[F(\alpha_1,\alpha_2):F(\alpha_2)]=\deg l_2^*$. Which gives $[F(\alpha_1,\alpha_2):F]=\deg l_2^*\cdot\deg m$. Similarly $[F(\alpha_1,\alpha_2):F]=\deg l_1\cdot\deg m$ and we conclude that $\deg l_1=\deg l_2^*$.

2. Since $l_1$ is the minimal polynomial of $\alpha_2$ over $F(\alpha_1)$, we must have that $l_1(x)|m(x)$ in $F(\alpha_1)[x]$. Thus there is an element $q_1(x)\in F(\alpha_1)[x]$ such that $l_1(x)q_1(x)=m(x)$. Operating $\psi$ on both the sides we get $l_2(x)q_2(x)=m(x)$, where $q_2(x)=\psi(q_1(x))$. Now since $m(\alpha_1)=0$, we have $l_2(\alpha_1)q_2(\alpha_1)=0$. If from here we can show that $l_2(\alpha_1)=0$ then we'd be done. But I can't rule out the possibility that $q_2(\alpha_1)=0$.

Can anyone help?

Here's an answer. abstract algebra - Minimal Polynomial Trouble - Mathematics Stack Exchange
 

Similar threads

Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
6
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 24 ·
Replies
24
Views
5K
  • · Replies 3 ·
Replies
3
Views
2K