MHB Does the Isomorphism Between Field Extensions Determine the Minimal Polynomial?

caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Let $L$ be an extension of a field $F$. Let $\alpha_1, \alpha_2\in L$ be such that both of them are algebraic over $F$ and have the same minimal polynomial $m$ over $F$. We know that there is an isomorphism $\phi:F(\alpha_1)\to F(\alpha_2)$ defined as $\phi(\alpha_1)=\alpha_2$ and $\phi(x)=x$ for all $x\in F$. We can extend $\phi$ to an isomorphism $\psi:F(\alpha_1)[x]\to F(\alpha_2)[x]$ defined as $\psi(\sum_{j=0}^k a_jx^j)=\sum_{j=0}^k \phi(a_j)x^j$. Let $l_1$ be the minimal polynomial of $\alpha_2$ over $F(\alpha_1)$ and define $l_2(x)=\psi(l_1(x))$.

QUESTION: Is is necessarily true that $\alpha_1$ has $l_2$ as its minimal polynomial over $F(\alpha_2)$.

I have some evidence which says that $l_2$ indeed is the minimal polynomial of $\alpha_1$ over $F(\alpha_2)$.

1. Say $l_2^*$ is the minimal polynomial of $\alpha_1$ over $F(\alpha_2)$. Then $[F(\alpha_1,\alpha_2):F(\alpha_2)]=\deg l_2^*$. Which gives $[F(\alpha_1,\alpha_2):F]=\deg l_2^*\cdot\deg m$. Similarly $[F(\alpha_1,\alpha_2):F]=\deg l_1\cdot\deg m$ and we conclude that $\deg l_1=\deg l_2^*$.

2. Since $l_1$ is the minimal polynomial of $\alpha_2$ over $F(\alpha_1)$, we must have that $l_1(x)|m(x)$ in $F(\alpha_1)[x]$. Thus there is an element $q_1(x)\in F(\alpha_1)[x]$ such that $l_1(x)q_1(x)=m(x)$. Operating $\psi$ on both the sides we get $l_2(x)q_2(x)=m(x)$, where $q_2(x)=\psi(q_1(x))$. Now since $m(\alpha_1)=0$, we have $l_2(\alpha_1)q_2(\alpha_1)=0$. If from here we can show that $l_2(\alpha_1)=0$ then we'd be done. But I can't rule out the possibility that $q_2(\alpha_1)=0$.

Can anyone help?
 
Physics news on Phys.org
caffeinemachine said:
Let $L$ be an extension of a field $F$. Let $\alpha_1, \alpha_2\in L$ be such that both of them are algebraic over $F$ and have the same minimal polynomial $m$ over $F$. We know that there is an isomorphism $\phi:F(\alpha_1)\to F(\alpha_2)$ defined as $\phi(\alpha_1)=\alpha_2$ and $\phi(x)=x$ for all $x\in F$. We can extend $\phi$ to an isomorphism $\psi:F(\alpha_1)[x]\to F(\alpha_2)[x]$ defined as $\psi(\sum_{j=0}^k a_jx^j)=\sum_{j=0}^k \phi(a_j)x^j$. Let $l_1$ be the minimal polynomial of $\alpha_2$ over $F(\alpha_1)$ and define $l_2(x)=\psi(l_1(x))$.

QUESTION: Is is necessarily true that $\alpha_1$ has $l_2$ as its minimal polynomial over $F(\alpha_2)$.

I have some evidence which says that $l_2$ indeed is the minimal polynomial of $\alpha_1$ over $F(\alpha_2)$.

1. Say $l_2^*$ is the minimal polynomial of $\alpha_1$ over $F(\alpha_2)$. Then $[F(\alpha_1,\alpha_2):F(\alpha_2)]=\deg l_2^*$. Which gives $[F(\alpha_1,\alpha_2):F]=\deg l_2^*\cdot\deg m$. Similarly $[F(\alpha_1,\alpha_2):F]=\deg l_1\cdot\deg m$ and we conclude that $\deg l_1=\deg l_2^*$.

2. Since $l_1$ is the minimal polynomial of $\alpha_2$ over $F(\alpha_1)$, we must have that $l_1(x)|m(x)$ in $F(\alpha_1)[x]$. Thus there is an element $q_1(x)\in F(\alpha_1)[x]$ such that $l_1(x)q_1(x)=m(x)$. Operating $\psi$ on both the sides we get $l_2(x)q_2(x)=m(x)$, where $q_2(x)=\psi(q_1(x))$. Now since $m(\alpha_1)=0$, we have $l_2(\alpha_1)q_2(\alpha_1)=0$. If from here we can show that $l_2(\alpha_1)=0$ then we'd be done. But I can't rule out the possibility that $q_2(\alpha_1)=0$.

Can anyone help?

Here's an answer. abstract algebra - Minimal Polynomial Trouble - Mathematics Stack Exchange
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top