Does the log property a*log(x)=log(x^a) still hold if a is even and x

  • Thread starter Thread starter alexsylvanus
  • Start date Start date
  • Tags Tags
    even Log Property
alexsylvanus
Messages
11
Reaction score
0
Does the log property a*log(x)=log(x^a) still hold if a is even and x

I imagine that ln(-1)+ln(-1) can't equal zero, even by some mysterious magic involving complex numbers.
 
Mathematics news on Phys.org
Sorry if x is negative
 
It holds, but you have to be careful with complex logarithms.

Your mistake was in assuming that log 1 = 0. This is true when you're dealing with real numbers only, but not necessarily true when you're dealing with complex numbers.

The actual complex log of 1 is ##2k{\pi}i##, where k is an integer. This just becomes the familiar zero when k = 0. But k can be any integer, meaning the complex log has an infinite number of possible values.

More generally, the complex log of a complex no. z is given by ##\log(z) = \ln|z| + i(\theta + 2k\pi)##, where ##\theta## is the argument of the complex no. ##(-\pi < arg(z) < \pi)## and ##\ln|z|## is the usual single-valued real logarithm of the modulus of z.

The principal value of the complex log is often denoted as ##Log(z)## (the capitalisation is intended). It is defined by ##Log(z) = \ln|z| + i\theta##, where the argument ##\theta## lies in the same range as previously defined.

On that basis you can say that your statement holds insofar as the sum of the principal complex logs on the LHS will equal to one possible value of the multivalued complex log on the RHS.

As an example, working with the principal values of the complex logs, ##\log(-1) = i\pi##, so ##2\log(-1) = 2i\pi##, which is also one of the complex values of ##\log 1##.

Note that it is not necessarily the case that the sum of the principal logs on the LHS will equal to the principal log of the RHS. The question you posed is a counterexample, because the principal value of the log of 1 is the usual value, 0.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Replies
1
Views
1K
Replies
10
Views
2K
Replies
15
Views
3K
Replies
37
Views
4K
Replies
16
Views
3K
Replies
5
Views
2K
Back
Top