Does the set of solutions for Ax=b form a subspace?

  • Thread starter Thread starter mitch_1211
  • Start date Start date
  • Tags Tags
    Form Set Subspace
mitch_1211
Messages
95
Reaction score
1
I have a non-homogeneous Ax=b (with b non-zero) and i want to know if the set of all the solution vectors, x, forms a subspace.

I know that every solution can be written as x = xparticular + xhomogeneous i.e as the sum of a particular solution and a homogeneous solution, but I'm not sure if this helps here...

thanks!
 
Physics news on Phys.org
Just try it:

Let x be a solution and c a constant, then
A (c x) = c A x = c b != b

Let x1 and x2 be solutions, then
A (x1+x2) = A x1 + A x2 = b + b = 2b != 0

So no, the solutions do not define a linear subspace.

---------------------------------------------------------------

That said, they do define a nice plane within the original vector space.
This plane is actually an affine space (http://en.wikipedia.org/wiki/Affine_space)
In the words of the French mathematician Marcel Berger,
"An affine space is nothing more than a vector space whose origin we try to forget about, by adding translations to the linear maps"

By choosing a fixed vector in the affine space you can recover the linear structure.
Let x0 be any fixed vector in the solution space of A x0 = b.
Then define for any x st A x = b, define y = x - x0, which satisfies
A y = A x - A x0 = b - b = 0.
The set of all { y = x - x0 | A x = b } forms a nice linear space.
The y are in 1:1 correspondence with the x,
so we can redefine addition and multiplication on the original x and recover a linear space:
c1 * x1 + c2 * x2 = c1 x1 + c2 x2 - (c1 + c2 - 1) x0
The solution space of A x = b is linear with respect to the new, underlined multiplication and addition.
Note that x0 is the zero vector wrt the underlined operations
x + c * x0 = x + c x0 - (1 + c - 1) x0 = x
This is basically what's said in http://en.wikipedia.org/wiki/Affine_space#Affine_subspaces
 
Besides the checking above, there is an explanation why it is not so.

From x = xparticular + xhomogeneous,

3 things i want to mention:
1)xparticular is in the row space of A.
2)xhomogeneous is in the nullspace of A.
3)xparticular is unique.

so xparticular is just 1 vector(cannot form a subspace) and this vector is independent of any vector in the nullspace of A. This is because row space of A and the nullspace of A is orthogonal.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top