Aldarion said:
As I understand it, the more complex the element, more energy is required to create it.
It's not that simple. Any stable atom will have
less energy than its constituent particles would if they were isolated and not bound together. So from that point of view, creating, say, a He-4 nucleus from two free protons and two free neutrons, or even from two deuterium nuclei,
emits energy. That is why nuclear fusion is an energy source, for example in the Sun. And further fusion reactions can in turn emit more energy as they create larger nuclei, up to iron (Fe-56). After that point, fusion reactions no longer emit energy; they require energy. (Fission reactions, where larger nuclei break up into smaller ones, can, OTOH, emit energy when they start with nuclei heavier than iron. That's why, for example, uranium and plutonium can be used to make reactors and bombs.)
The reason fusion reactions haven't already consumed all the light elements in the universe and turned them into iron is that for them to happen, the particles to be fused have to be very, very close together. Since nuclei are positively charged, they repel each other, so it takes a very specific set of conditions to allow fusion reactions to happen. Except for a few human experiments, the only places those conditions exist in the universe are in the cores of stars or supernova explosions.
Aldarion said:
some elements may only be created in stars of certain size.
This is because fusion reactions beyond hydrogen-to-helium require progressively more extreme conditions to happen, which require larger stars in order for their cores to meet those conditions.
Aldarion said:
Iron is the cutoff point because iron is the heaviest element that is created in stars of normal size, that is, through nuclear fusion.
And the reason for this is, as noted above, that iron (Fe-56) is the last point at which fusion reactions emit energy.
Aldarion said:
Any elements heavier than iron require additional input of energy, i.e. a supernova. And heavier the element is, less likely is it to be created.
For elements heavier than iron, yes, this is basically correct.