Does this have to do with the orientation?

  • Thread starter Thread starter Nusc
  • Start date Start date
  • Tags Tags
    Orientation
Nusc
Messages
752
Reaction score
2

Homework Statement


The final answer should be
<br /> \begin{equation}<br /> + g^{2} \int_{-\infty}^{\infty} d \Delta&#039;\; {\cal \rho}(\Delta&#039;)\, \frac{1}{s+\gamma+i\Delta&#039;} = + g^{2} \frac{1}{s+\gamma+\gamma_{n}}<br /> \end{equation}<br />

but I get a - in front of g

<br /> \begin{subequations}<br /> \begin{eqnarray}<br /> \int_{-\infty}^{\infty} d \Delta&#039;\; {\cal \rho}(\Delta&#039;)\, \frac{1}{s+\gamma+i\Delta&#039;}<br /> &amp;=&amp; <br /> \frac{1}{\pi} \int_{-\infty}^{\infty} d \Delta&#039;\; \frac{\gamma_{n}}{(\Delta&#039;^{2}+\gamma_{n}^{2})}\, \frac{1}{(s+\gamma+i\Delta&#039;)}<br /> \\<br /> \nonumber<br /> &amp;=&amp; <br /> \frac{1}{\pi} \int_{-\infty}^{\infty} d \Delta&#039;\; \frac{\gamma_{n}}{(\Delta&#039;+i\gamma_{n})(\Delta&#039;-i\gamma_{n})}\, \frac{1}{(s+\gamma+i\Delta&#039;)}<br /> \end{eqnarray}<br /> \end{subequations}<br />
in which case the poles are at $\pm i\gamma_{n}, +i(s+\gamma)$.

<br /> \begin{subequations}<br /> \begin{eqnarray}<br /> \lim \limits_{\Delta&#039; \to i\gamma_{n}} \frac{\gamma_{n}}{(\Delta&#039;+i\gamma_{n})}\, \frac{1}{(s+\gamma+i\Delta&#039;)} &amp;=&amp; \frac{1}{2i}\frac{1}{s+\gamma-\gamma_{n}}<br /> \\<br /> \lim \limits_{\Delta&#039; \to -i\gamma_{n}} \frac{\gamma_{n}}{(\Delta&#039;-i\gamma_{n})}\, \frac{1}{(s+\gamma+i\Delta&#039;)} &amp;=&amp; \frac{-1}{2i}\frac{1}{s+\gamma+\gamma_{n}}<br /> \\<br /> \lim \limits_{\Delta&#039; \to i(s+\gamma)} \frac{\gamma_{n}}{(\Delta&#039;+i\gamma_{n})(\Delta&#039;-i\gamma_{n})}\frac{1}{(s+\gamma+i\Delta&#039;)} &amp;=&amp; \lim \limits_{\Delta&#039; \to i(s+\gamma)} \frac{\gamma_{n}}{(\Delta&#039;+i\gamma_{n})(\Delta&#039;-i\gamma_{n})}\frac{-i}{(-i(s+\gamma)+\Delta&#039;)} <br /> \\<br /> \end{eqnarray}<br /> \end{subequations}<br />
It is simpler integrate in down region where we have only one pole $ -i\gamma_{n}$.
While we have two poles in the region above the x:
$\Delta&#039;= i\gamma_n$,
and
$\Delta&#039;= i(s+\gamma)$.
<br /> \begin{subequations}<br /> \begin{eqnarray}<br /> \oint_{\gamma_{R}(t)} f(z) \, dz &amp;=&amp; 2\pi i[\frac{1}{2i}\frac{-1}{s+\gamma+\gamma_{n}} ]<br /> %\frac{-1}{2i}\frac{1}{s+\gamma-\gamma_{n}} + \frac{\gamma_{n}}{(-s-\gamma+\gamma_{n})(s+\gamma+\gamma_{n})}]<br /> \\<br /> %&amp;=&amp;2\pi i[-\frac{(1+i)\gamma_{n}}{(s+\gamma-\gamma_{n})(s+\gamma+\gamma_{n})}]<br /> \end{eqnarray}<br /> \end{subequations}<br />
<br /> \begin{subequations}<br /> \begin{eqnarray}<br /> \int_{-\infty}^{\infty} d \Delta&#039;\; {\cal \rho}(\Delta&#039;)\, \frac{1}{s+\gamma+i\Delta&#039;}<br /> &amp;=&amp; <br /> \frac{-\pi}{s+\gamma+\gamma_{n}} <br /> \\<br /> \frac{1}{\pi}\int_{-\infty}^{\infty} d \Delta&#039;\; {\cal \rho}(\Delta&#039;)\, \frac{1}{s+\gamma+i\Delta&#039;}<br /> &amp;=&amp; <br /> \frac{-1}{s+\gamma+\gamma_{n}} <br /> \end{eqnarray}<br /> \end{subequations}<br />
I get:
<br /> \begin{equation}<br /> + g^{2} \int_{-\infty}^{\infty} d \Delta&#039;\; {\cal \rho}(\Delta&#039;)\, \frac{1}{s+\gamma+i\Delta&#039;} = s + \kappa - g^{2} \frac{1}{s+\gamma+\gamma_{n}}<br /> \end{equation}<br />

Homework Equations



The Attempt at a Solution

 
Physics news on Phys.org


Does this have to do with the orientation?
 


I didn't check the whole thing, but if you are integrating in the lower half plane, the contour does close clockwise instead of counterclockwise, so there is an extra factor of -1.
 


If I'm integrating in the bottom region, how do I know if I'm going cw or ccw? Sorry it's been along time since I've done this.
 


S'ok. You have go in a positive direction (since that's the direction of the real integral) along the x-axis and then circle around the singularity in the negative half plane and then return to the x-axis. You are sort of stuck moving clockwise.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top