Doppler effect and acceleration of source

Click For Summary
SUMMARY

The discussion focuses on calculating the acceleration of a sound source moving towards an observer and the time it takes to reach them, given a measured frequency of 520 Hz at rest and 1040 Hz when moving. The wavelength was calculated using the formula λ = v_phasefront / f_0, resulting in λ = 0.6596 m. The final speed of the source was determined to be 171.5 m/s, leading to an acceleration of 8.65 m/s² and a time of 19.83 seconds for the source to reach the observer.

PREREQUISITES
  • Understanding of the Doppler effect and its equations
  • Familiarity with kinematic equations for uniformly accelerated motion
  • Knowledge of wave properties, including wavelength and frequency
  • Basic algebra for rearranging equations and solving for variables
NEXT STEPS
  • Study the Doppler effect in detail, focusing on its mathematical formulation
  • Learn about kinematic equations and their applications in physics
  • Explore sound wave properties, including speed, frequency, and wavelength relationships
  • Practice solving problems involving acceleration and time in motion scenarios
USEFUL FOR

Students studying physics, particularly those focusing on wave mechanics and motion, as well as educators seeking to enhance their understanding of the Doppler effect and its applications in real-world scenarios.

orangephysik
Messages
11
Reaction score
1
Homework Statement
A source at rest is at a distance of s_0 = 1.7 km from you and you measure a frequency of f_0 = 520 Hz. At time t = 0 the source moves directly towards you with a constant acceleration. When the source reaches you, you measure a frequency of f_1 = 1040 Hz.

a) What is the acceleration of the source and at which time t does the source reach you?
Relevant Equations
Measured frequency, f_Source * = f_0 (1/ (1 - [v_source / v_phasefront] )
Hi. I need help with part a).
I calculated the wavelength of the source by using the formula f_0 = v_phasefront / λ and got λ = (343 m/s) / (520 Hz) = 0.6596 m.
And then I set up an equation for the velocity of the source v(t) = a*t (with v(t = 0 )= 0 m/s) and s(t) = 1/2 * at^2 + s_0. But I just have no idea how I can find the acceleration with these information.
 
Physics news on Phys.org
orangephysik said:
Homework Statement:: A source at rest is at a distance of s_0 = 1.7 km from you and you measure a frequency of f_0 = 520 Hz. At time t = 0 the source moves directly towards you with a constant acceleration. When the source reaches you, you measure a frequency of f_1 = 1040 Hz.

a) What is the acceleration of the source and at which time t does the source reach you?
Relevant Equations:: Measured frequency, f_Source * = f_0 (1/ (1 - [v_source / v_phasefront] )

Hi. I need help with part a).
I calculated the wavelength of the source by using the formula f_0 = v_phasefront / λ and got λ = (343 m/s) / (520 Hz) = 0.6596 m.
And then I set up an equation for the velocity of the source v(t) = a*t (with v(t = 0 )= 0 m/s) and s(t) = 1/2 * at^2 + s_0.

Hello @orangephysik,
:welcome: ##\qquad## !​

1. I don't think there's anything relativistic about this exercise, but don't mind to be proven wrong.

orangephysik said:
But I just have no idea how I can find the acceleration with these information.

2. Well, what information haven't you used yet ? Something with Doppler ?

##\ ##
 
BvU said:
Hello @orangephysik,
:welcome: ##\qquad## !​

1. I don't think there's anything relativistic about this exercise, but don't mind to be proven wrong.
2. Well, what information haven't you used yet ? Something with Doppler ?

##\ ##
I had f_0 = v_phasefront / λ and got λ = (343 m/s) / (520 Hz) = 0.6596 m, and this is the wavelength of the source when it was at rest.
With the same formula, f_1 = v_phasefront / λ' , so λ' = (343 m/s) / (1040 Hz) = 0.3298 m, this is the wavelength when the source reaches me.

Now using
Measured frequency, f_Source * = f_0 (1/ (1 - [v_source / v_phasefront] )

1040 Hz = 520 Hz * (1/ [1 - (v_source / 343 m/s) ]), rearranging I got v_source = 171.5 m/s.

I also know λ' = λ - v_source * T (whereby T is the period). Plugging in the values to find T, I got T = 1.923 ms.

So the acceleration must be a = v_source / T = 8.92*10^4 m/(s^2). Is this the correct way of solving the question?
 
orangephysik said:
Is this the correct way of solving the question?
Actually there are two questions. One is asking for the acceleration of the source, the other for a time.
I agree the first step is to find the final speed of the source. Looks OK.
But then you derive a T in a cumbersome way (it is 1/520) and you seem to think this period is equal to the time the source needs to reach you. Why ? 2 ms to cover what distance again ?

The equations you set up at the end of post #1 look a lot more promising to me :smile: !

##\ ##
 
BvU said:
Actually there are two questions. One is asking for the acceleration of the source, the other for a time.
I agree the first step is to find the final speed of the source. Looks OK.
But then you derive a T in a cumbersome way (it is 1/520) and you seem to think this period is equal to the time the source needs to reach you. Why ? 2 ms to cover what distance again ?

The equations you set up at the end of post #1 look a lot more promising to me :smile: !

##\ ##
Oh right. The period T is the time it takes for the sound waves to travel a distance of λ - λ' = 0.3298 m.

So since acceleration is a = Δv/Δt, I already have Δv since v_0 = 0 m/s and now I just need Δt. But the question implies that I can find the acceleration without knowing Δt.

I have v(t) = a*t ⇔ 171.5 m/s = a*t ⇔ t = (171.5 m/s) / a (whereby t is the time it takes to reach me, since 171.5 m/s is the speed when it reaches me)

I also have s(t) = 1/2 * at2
I know that it has travelled 1.7 km when it reaches me, so 1.7 km = 1/2 * at2
⇔ t = √[(3.4 km)/a]

Setting these two equations for t equal, I get a = 8.65 m/s, which means t = 19.83 s.

I hope this time I'm right :biggrin:
 
Hoping you're right is one thing. What is needed to convince you that you are right :wink: ?

Well done!

##\ ##
 
  • Like
Likes   Reactions: DeBangis21 and orangephysik

Similar threads

  • · Replies 8 ·
Replies
8
Views
912
Replies
8
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
932
  • · Replies 4 ·
Replies
4
Views
2K