PhysicsLaura said:
If the doppler effect is the changing if wavelengths due to movement of a light source (In reference to light of course), does this mean the distance between the wavefront and the source changes at a speed DIFFERENT from C? doesn't this mean that if the observer is in the plane of the source the speed of light for that observer is NOT C? I'm sure I'm missing something, because there's no way the rule of invariable C is shown to be wrong that easily! Especially not by me! haha! Not sure if I made it clear but the source would be moving in the direction of the direction of travel of the wave at any velocity with regards to the plane of the wavefront.
If I understand you correctly, you are saying that you have an observer (who we'll take to be stationary) and a light source that is moving towards him with speed v. The problem is, you are then reasoning that if the light moves with speed c towards the observer, and the source moves with speed v towards the observer, then light must move with speed c - v away from the source. The problem with this is that, you have implicitly, without realizing it, changed frames of reference from the observer's frame to the source's frame, and you used a velocity transformation rule to transform the velocity of the light as measured in the first frame to the velocity of light as measured in the second frame. Unfortunately, you used the
wrong velocity transformation law. You used the classical or "Galilean" velocity transformation rule, which says that to transform from the velocity of an object u as measured in one reference frame, to the velocity of that same object (u') as measured in another reference frame that is moving with speed v relative to the first, you simply add the two relative motions together, so that u = u' + v.
However, velocities do not add together in this simple way in special relativity.
Instead, the correct velocity transformation rule is u = (u' + v) / (1 - u'v/c^2). Notice that if the "object" whose velocity u we are measuring in either frame is a photon, i.e. u' = c, then we end up with:
u = (c + v)/(1 +cv/c^2) = (c + v)/(1 + v/c)
Multiply the numerator and the denominator by c:
u = c(c+v) / (c + v) = c
u = c
If the velocity is c in one reference frame, it will be c in any other reference frame. EDIT: I am talking about inertial reference frames here. This makes sense, because the velocity transformation rule above was
derived by assuming (i.e. taking it to be a postulate of special relativity) that light always moves at c in any frame of reference.
At first it might seem preposterous that if a moving source emits light at speed c relative to it, then you will measure that light to be coming toward you at speed c as well (as opposed to faster than c). However, it soon makes sense if you realize that the receiver and the sender do not agree on the amount of time that it takes for the light to travel between them, or the amount of distance covered by the light. This is the unique result of special relativity: space and time are relative.