Understanding DTFT Angular Frequency: Mike's Questions

AI Thread Summary
Understanding angular frequency in the discrete time Fourier transform (DTFT) involves recognizing that angular frequency can be expressed in radians per second and typically ranges from -π to π or 0 to 2π, depending on the definition used. The maximum observable frequency in a DTFT is half the sampling frequency, adhering to the Nyquist theorem, which states that sampling must occur at twice the highest frequency present to avoid aliasing. When converting angular frequency to Hertz, one must consider the sampling rate, as the relationship is given by ω = 2π * Frequency (in Hz). If the sample rate is unknown, useful insights can still be gained from the DTFT plot by analyzing the harmonic content of the signal, although phase information may not be meaningful. Clarifying whether the discussion pertains to the DTFT or the discrete Fourier transform (DFT) is crucial for accurate interpretation.
MikeSv
Messages
34
Reaction score
0
Hello everyone.
Iam trying to understand the discrete time Fourier transform for a signal processing course but Iam quite confused about the angular frequency.If I have a difference equation given, what values should I choose for my angular frequency if I do
not know anything about the sample frequency?
Should they go from - pi to pi or from 0 to 2pi?

And what does it mean if The frequency is given in 'units of pi'?

Can I convert this into Hz?

Thanks in advance,

Mike
 
Engineering news on Phys.org
Angular frequency in radians per second, ω = 2 ⋅ π ⋅ Frequency ( in Hz. )
Time can be -π to +π or from 0 to 2π. Either is possible, depending on definition.
You should calibrate any DFT for phase and amplitude by generating a known input fundamental sine or cosine function and seeing what phase and amplitude it returns.

If you have n samples at a rate of r samples per second. Maximum frequency will be r/2 Hz.
The output will be frequency from 0 to fmax, but aliasing will wrap higher frequencies around through zero.
There will be n/2 discrete frequencies generated.
 
Thank you very much for your reply!
So the maximum frequency Iam able to see in my DTFT is 1/2 of my sampling frequency?

That means I have to multiply my angular frequency by 1/2 the sampling frequency to get the frequency values in Hz, right? (In case the angular frequency is normalized)

But what if I have a sequence given without knowing anything about the sample rate? Can I get some useful information from my DTFT plot by just looking at the angular frequencies without knowing anything about my "frequency range"?

Thanks again,

Mike
 
The DTFT computation uses the FFT algorithm. You provide n data points and it returns n/2 cosine terms and n/2 sine terms. That makes n/2 complex phasors. For example;
Sample 8 points in time at a rate of 8 samples per second, the DTFT will give 4 frequency bins. The acquisition time cycle wraps around at one second, so the frequency bins will each be 1/1sec = 1Hz wide.
The 8 DTFT outputs will make 4 complex numbers, or phasors, for frequencies of; 0, 1, 2, and 3. There is no frequency 4 as it is alias 0. The Cos(0) will be the DC offset, the Sin(0) should cancel to be zero.

MikeSv said:
So the maximum frequency I am able to see in my DTFT is 1/2 of my sampling frequency?
Sampling data is also a form of harmonic mixing. If you digitise a 999kHz signal at 1MHz you will get a 1kHz waveform. When higher frequencies are present in the data, they will be mapped, or aliased, down into the fundamental spectrum. According to Shannon, you must sample at twice the highest frequency present.
https://en.wikipedia.org/wiki/Nyquist–Shannon_sampling_theorem

MikeSv said:
That means I have to multiply my angular frequency by 1/2 the sampling frequency to get the frequency values in Hz, right?
Yes, with a trap. The first element will be at frequency zero. The last frequency element will be the channel below Fsample/2 = Freq( (n/2) – 1). Remember the 0 to n–1, means you need to know n to scale frequency precisely. Discrete transforms have that digital counting problem.
Depending on how it is normalised you will need to multiply by n/2 and divide by the full scale value. You can only be sure if you calibrate the transform with a precise cosine wave and check that the “energy” ends up in the correct frequency bin, with the correct phase and amplitude.

MikeSv said:
But what if I have a sequence given without knowing anything about the sample rate? Can I get some useful information from my DTFT plot by just looking at the angular frequencies without knowing anything about my "frequency range"?
If you know the input was a single cycle of a repeating signal then you can study the harmonic content of the waveform. Phase will be meaningless, so you must study the amplitude of the odd and even harmonic phasors to identify the signal.
 
I agree with Baluncore on how to translate frequencies.

However, this conversation is a little confusing when it comes to samples, especially in frequency space. Are we talking about the Discrete Fourier Transform (DFT), or the Discrete Time Fourier Transform (DTFT)? Baluncore is clearly talking about the DFT, while I thought MikeSv was asking about the DTFT.

Jason
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top