Duality Principle | Understand the Concept

  • Thread starter Thread starter woundedtiger4
  • Start date Start date
  • Tags Tags
    Duality Principle
woundedtiger4
Messages
188
Reaction score
0
Have i done it correctly?
ImageUploadedByPhysics Forums1371301423.550375.jpg
 
Physics news on Phys.org
A better wording (after "i.e.") would be that there exists i such that x belongs to Ai, etc.
 
haruspex said:
A better wording (after "i.e.") would be that there exists i such that x belongs to Ai, etc.

Thanks
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Replies
11
Views
412
Replies
36
Views
7K
Replies
38
Views
4K
Replies
10
Views
3K
Replies
2
Views
733
Replies
2
Views
1K
Replies
9
Views
2K
Back
Top