Dynamics of circular motion. Particle on the top of a circle

AI Thread Summary
A particle of mass M starts falling from the top of a vertical circle without initial velocity, and the goal is to determine the angle at which it leaves the circle. The discussion involves using unit vectors to analyze the motion, applying equations for velocity and acceleration, and setting up force equations that include weight and normal force. A sign error in the integration process is identified, leading to confusion in the calculations. The correct angle at which the particle leaves the circle is found to be approximately 48.19 degrees, with suggestions to use conservation of energy for a more straightforward solution. The conversation highlights the importance of correct bounds in integration and careful attention to signs in equations.
Zipi Damn
Messages
11
Reaction score
0

Homework Statement


A particle of mass M is on the top of a vertical circle without initial velocity. It starts to fall clockwise.

Find the angle with respect to the origin, where the particle leaves the circle.

bc8d1bbbf5.gif


Homework Equations


v=ωXr

The Attempt at a Solution



I used two unitary vectors..
εr : which direction is the same as the line described by the radio in the separation point.
εθ: perpendicular to εr (the direction of the tangential velocity in the separation point)

r=R er

v=dr/dt = Rder/dt
v=ωXr (counterclockwise, so I changedthe sign to negative)
v=-R(ωXer)

v = -R(-ω) = ωR
α=dω/dt

a = dv/dt = R(α + ω d/dt)

d/dt = -(ωX) = -ωer

a = α R - ω^2 R er

Forces:
Weight, Normal force
Centripetal is a resultant?

F(eθ)==> mgcosθ = αRm
F(er)==> N-mgsenθ= -ω^2Rm

So:

α=dω/dt= (dω/dθ)(dθ/dt)=ωdω/dθ

θ
∫αdθ =
∏/2

ω
∫ωdω
ω0

From F(er) : α= (gcosθ)/R

θ
∫ (gcosθ)/Rdθ = (gsenθ)/R
∏/2

ω
∫ωdω= (ω^2)/2
ω0ω^2 = (2gsenθ)/R

I come back to the force equations, (with zero normal force) and replace ω^2

And I get nonsenses like 2=1. Did I do something wrong?

Solution: 48,19º (by the teacher)
 
Physics news on Phys.org
Zipi Damn said:
θ
∫αdθ =
∏/2

ω
∫ωdω
ω0
Not sure exactly where, but you have a sign error. The first integral will be negative, but the second positive.
θ
∫ (gcosθ)/Rdθ = (gsenθ)/R
∏/2
You've not filled in the 'lower' bound correctly after integrating.
ω^2 = (2gsenθ)/R
Could have got this much more quickly and reliably by conservation of energy. Note that the RHS should be 1-sin, not sin.
 
I found it solved.

rbxrgn.jpg
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top