I Is the Scale Difference Between E=pc and v=E/p Explained by Special Relativity?

  • I
  • Thread starter Thread starter JohnH
  • Start date Start date
JohnH
Messages
63
Reaction score
6
If velocity is energy divided by momentum it seems like the difference in scale between them is v and yet E=pc suggests the difference in scale is C not v. Why is this?
 
Physics news on Phys.org
JohnH said:
If velocity is energy divided by momentum it seems like the difference in scale between them is v and yet E=pc suggests the difference in scale is C not v. Why is this?
Because ##E=pc## only applies to massless particles, and these always move with speed ##c##. The general relationship that you want is ##E^2=(mc^2)^2+(pc)^2##, which reduces to ##E=pc## for massless particles and to the famous ##E=mc^2## when ##p## is zero (massive particle at rest).

There’s also the classical formula for the kinetic energy of something moving at speeds that are small compared with the speed of light: ##E_k=mv^2/2=p^2/2m##.
 
  • Like
Likes Omega0 and vanhees71
JohnH said:
If velocity is energy divided by momentum
I think that is backwards. I think it is ##\vec v=\vec p/E##
 
  • Like
Likes vanhees71
Ah I see. This makes sense. Thank you Nugatory.
 
Dale said:
I think that is backwards. I think it is ##\vec v=\vec p/E##
The units don't match, do they?
 
nasu said:
The units don't match, do they?
In units where c=1, they do.

A good sanity check is the fact that the left hand side is a vector quantity and the right hand side has a vector quantity in the numerator and a scalar in the denominator. The competing formula, ##\vec{v}=E/\vec{p}## fails that sanity check -- can't divide a scalar by a vector.

Edit: To be fair you could multiply through by ##\vec{p}## and cast the competing equation as ##\vec{v} \cdot \vec{p} = E##, thereby getting something dimensionally consistent.
 
jbriggs444 said:
In units where c=1, they do.

A good sanity check is the fact that the left hand side is a vector quantity and the right hand side has a vector quantity in the numerator and a scalar in the denominator. The competing formula, ##\vec{v}=E/\vec{p}## fails that sanity check -- can't divide a scalar by a vector.
jbriggs444 said:
In units where c=1, they do.

A good sanity check is the fact that the left hand side is a vector quantity and the right hand side has a vector quantity in the numerator and a scalar in the denominator. The competing formula, ##\vec{v}=E/\vec{p}## fails that sanity check -- can't divide a scalar by a vector.
Have you seen this formula with vectors in some book? I never said it should be written this way (with vectors, and vector p in the denominator).
 
nasu said:
Have you seen this formula with vectors in some book? I never said it should be written this way (with vectors, and vector p in the denominator).
I saw it in this thread.
JohnH said:
If velocity is energy divided by momentum
Velocity is a vector. Energy is a scalar. Momentum is a vector. It is worthwhile emphasizing that fact if you are one is planning to divide a scalar by a vector.

Edit: Rephrased to avoid implicit accusation which had apparently been taken badly.
 
Last edited:
nasu said:
The units don't match, do they?
You are right, but you can always throw in factors of c to fix that. In units where c=1 it is fine.

The problem I have with the other way is (in units where c=1) ##E>|\vec p|## so ##E/\vec p > 1## which would mean ##v>c##. At least ##\vec p/E## is a vector and is 0 when an object is at rest and is 1 for a massless object.

I am not sure ##\vec v = \vec p/E## is right, but it seems more plausible than the other way around.
 
  • #10
@jbriggs44
No, I am not planning do do anything like this. When did I say that ## \vec{v}=\frac{E}{\vec{p}}## is the correct formula? But this formula being wrong does not make ##\vec{v}=\frac{\vec{p}}{E} ## correct by default. Definitely does not work in classical mechanics. And in relativistic mechanics, I don't see how making c=1 will make this work. With c=1 we have ## E=\sqrt{m2+p^2} ## so ## \frac{p}{E}=\frac{p}{\sqrt{m2+p^2}} ##. Can you manipulate this to give the velocity in the end?
Being consistent in terms of vector quantities does not make the equation physically right. This is all I was trying to say.
Nugatory already showed the OP that his equation is not right for massive particles. You cannot make it right by just switching the numerator and denominator.

@Dale
I did not say that the formula proposed by the OP is right. It's simply wrong and you cannot make it right just by fixing the vector part.
 
Last edited:
  • #11
nasu said:
Nugatory already showed the OP that his equation is not right for massive particles. You cannot make it right by just switching the numerator and denominator.
Actually, I just worked it out for massive particles and you can make it right by switching the numerator and denominator. For a massive object in units where c=1 we have:$$m^2=E^2-p^2$$ $$p= \frac{m v}{\sqrt{1-v^2}}$$ Which you can solve for ##v## and eliminate ##m## to get
$$v=\frac{p}{E}$$
 
  • #12
nasu said:
With c=1 we have ## E=\sqrt{m^2 + p^2} ## so ## \frac{\vec{p}}{E}=\frac{\vec{p}}{\sqrt{m^2 + p^2}} ##. Can you manipulate this to give the velocity in the end?

Yes:

##\dfrac{\vec p}{\sqrt{m^2 + p ^2}} = \dfrac{\gamma m \vec v}{\sqrt{m^2 + \gamma^2 m^2 v ^2}} = \dfrac{\gamma}{\sqrt{1 + (\gamma v)^2}} \, \vec v = \dfrac{\gamma}{\sqrt{\gamma^2}} \, \vec v = \vec v##

(where ##\gamma = 1 / \sqrt{1 - v^2}##).
 
  • Like
Likes Dale
  • #13
@Dale
Nice. :) You are right.
I was too lazy to try it. It did not seem possible to simplify the formula to this.
So it works for relativistic mechanics.

@SiennaTheGr8
Yes, I tried it too after Dale said it works.
You are right.
 
  • Like
Likes Dale
  • #14
Concerning ##\displaystyle v=\frac{p}{E}##, it's helpful to think geometrically, with rapidities ##\theta##,
the Minkowski-angle between inertial worldlines, with ##v=c\tanh\theta##.
I've thrown in the factors of ##c## and
##\cosh\theta=\gamma=\frac{1}{\sqrt{1-(v/c)^2}}=\frac{1}{\sqrt{1-\tanh^2\theta}}## to help in the translation.

##p## is the spatial component of the 4-momentum: ##p=m[c]\sinh\theta##.
##E## is the temporal component of the 4-momentum: ##E=m[c^2]\cosh\theta##.
So, $$\displaystyle \frac{v}{[c]}=\frac{p[c]}{E}=\frac{m[c] \gamma \frac{v}{c} [c]}{m[c^2]\gamma}=
\frac{m[c]\sinh\theta [c]}{m[c^2]\cosh\theta}=\tanh\theta,$$
the slope of the 4-momentum vector on an energy-momentum diagram.

The space-time analogue (or should that be time-space?) is
$$\displaystyle \frac{v}{[c]}=\frac{\Delta x/[c]}{\Delta t}
=\frac{\tau \gamma \frac{v}{c}}{\tau \gamma}
=\frac{\tau \sinh\theta}{\tau \cosh\theta}=\tanh\theta,$$
the slope of the 4-velocity vector on a spacetime diagram.
 
  • Like
Likes Dale
  • #15
Dale said:
I am not sure ##\vec v = \vec p/E## is right

It is. There might be a slicker way of showing it, but the brute force way of just checking each of the two possible cases (massive and massless) is straightforward:

Massive particle: ##E = m \gamma##, ##\vec{p} = m \gamma \vec{v}##, so obviously ##\vec{v} = \vec{p} / E##. (Edit: I see others have already gotten this.)

Massless particle: ##E = | \vec{p} |##, so ##\vec{p} / E = \vec{p} / | \vec{p} | = \vec{v}##, since ##\vec{v}## has a magnitude of ##1## (in units where ##c = 1##) for this case and ##\vec{v}## points in the same direction as ##\vec{p}##. (Edit: It does not appear that anyone has considered this case.)
 
  • Like
Likes vanhees71 and Dale
  • #16
Lev Okun calls ##\vec{p}=\big(\frac{E}{c^2}\big) \vec{v}## one of the fundamental equations of special relativity. It does indeed apply to both massless and massive particles.
 
  • Like
Likes vanhees71, weirdoguy and Dale
Back
Top