quanticism
- 29
- 3
Homework Statement
Show that
<br /> \lim_{x\to2}\frac{x+1}{x+2}=\frac{3}{4}.<br />
Homework Equations
Let
\epsilon>0. We seek a number \delta>0: if |x-2|<\delta then |\frac{x+1}{x+2}-\frac{3}{4}|<\epsilon.
The Attempt at a Solution
Now
<br /> |\frac{x+1}{x+2}-\frac{3}{4}|=|\frac{4x+4-3x-6}{4(x+2)}|=|\frac{x-2}{4(x+2)}|.<br />
So for
<br /> |\frac{x+1}{x+2}-\frac{3}{4}|<\epsilon, we require |\frac{x-2}{4(x+2)}|<\epsilon.<br />
ie.
<br /> |\frac{x-2}{x+2}|<4\epsilon.<br />
I got stuck here since I'm not sure how to express
<br /> |\frac{x-2}{x+2}|<br />
in terms of |x-2|