Eigenvalue of lowering operator

izzmach
Messages
7
Reaction score
0
How to prove that eigenvalue of lowering operator is zero?
 
Physics news on Phys.org
Eigenvalue of lowering operator is zero only on the ground state and this is so by the definition of ground state.
For other eigenvectors of the lowering operator(coherent states), eigenvalues are non-zero.
 
Ground state or the absolute minimum state of the system is "defined" as the state which gives zero when operated by the
lowering operator.

It is easy to consider the H.OSc. and operate with the lowering operator till it gets to the min = h-bar omega/2 and if you apply furthe the lowering operator then you get zero. Of course the system maybe different in different situation and hence the minimum state may vary.

watch out that minimum state or the vacuum state is not the zero state, a zero state does not exists in nature.
The proof is kind of trival. google on Fock space and there you get your proof.
 
Ladder operators (angular momentum or harmonic oscillators for example) act on states to go from one state to another state with an increased or decreased eigenvalue up to some normalization included. They are constructed so when you act on zero you get zero because that is the vacuum state by definition.

If you are talking about an eigenvalue of the lowering operator you must consider coherent states which are constructed to be eigenstates of the annihilation operator. The eigenvalue is some complex number. Coherent states are used in path integrals. If you look at the coherent states in the harmonic oscillator, they behave the most classically in terms of minimized uncertainty.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!

Similar threads

Back
Top