Treadstone 71
- 275
- 0
"Suppose V is a (real or complex) inner product space, and that T:V\rightarrow V is self adjoint. Suppose that there is a vector v with ||v||=1, a scalar \lambda\in F and a real \epsilon >0 such that
||T(v)-\lambda v||<\epsilon.
Show that T has an eigenvalue \lambda ' such that |\lambda -\lambda '| < \epsilon."
Since T is self adjoint, there exists an orthonormal basis (e_1,...,e_n), with corresponding eigenvalues \lambda_1,...,\lambda_n. Suppose v=x_1e_1+...+x_ne_n for some x_1,...,x_n\in F. Then,
||(\lambda_1-\lambda)x_1e_1+...+(\lambda_n-\lambda)x_1e_1||<\epsilon
Since the basis is orthonormal, it follow that
|(\lambda_1-\lambda)x_1|^2+...+|(\lambda_n-\lambda)x_n|^2<\epsilon^2.
At this point I am unable to deduce the conclusion.
||T(v)-\lambda v||<\epsilon.
Show that T has an eigenvalue \lambda ' such that |\lambda -\lambda '| < \epsilon."
Since T is self adjoint, there exists an orthonormal basis (e_1,...,e_n), with corresponding eigenvalues \lambda_1,...,\lambda_n. Suppose v=x_1e_1+...+x_ne_n for some x_1,...,x_n\in F. Then,
||(\lambda_1-\lambda)x_1e_1+...+(\lambda_n-\lambda)x_1e_1||<\epsilon
Since the basis is orthonormal, it follow that
|(\lambda_1-\lambda)x_1|^2+...+|(\lambda_n-\lambda)x_n|^2<\epsilon^2.
At this point I am unable to deduce the conclusion.
Last edited: