Eigenvalues of an operator in an inner product space

Treadstone 71
Messages
275
Reaction score
0
"Suppose V is a (real or complex) inner product space, and that T:V\rightarrow V is self adjoint. Suppose that there is a vector v with ||v||=1, a scalar \lambda\in F and a real \epsilon >0 such that

||T(v)-\lambda v||<\epsilon.

Show that T has an eigenvalue \lambda ' such that |\lambda -\lambda '| < \epsilon."

Since T is self adjoint, there exists an orthonormal basis (e_1,...,e_n), with corresponding eigenvalues \lambda_1,...,\lambda_n. Suppose v=x_1e_1+...+x_ne_n for some x_1,...,x_n\in F. Then,

||(\lambda_1-\lambda)x_1e_1+...+(\lambda_n-\lambda)x_1e_1||<\epsilon

Since the basis is orthonormal, it follow that

|(\lambda_1-\lambda)x_1|^2+...+|(\lambda_n-\lambda)x_n|^2<\epsilon^2.

At this point I am unable to deduce the conclusion.
 
Last edited:
Physics news on Phys.org
Suppose |\lambda _i - \lambda| \geq \epsilon for all i, then:

\epsilon^2 > |(\lambda_1-\lambda)x_1|^2+...+|(\lambda_n-\lambda)x_n|^2 = \sum _{k=1} ^n |\lambda _k - \lambda|^2|x_k|^2 \geq \sum \epsilon ^2|x_k|^2 = \epsilon ^2\sum |x_k|^2 = \epsilon ^2 ||v|| = \epsilon ^2
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top