Eigenvalues: Real & Equal in Size but Opposite Signs

  • Thread starter Thread starter Natasha1
  • Start date Start date
  • Tags Tags
    Eigenvalues
Natasha1
Messages
494
Reaction score
9
In my textbook recently I stumbled across the following:

Give a general description of those matrices which have two real eigenvalues equal in 'size' but opposite in sign? Could anyone explain this again very simply :-)
 
Physics news on Phys.org
What's to explain? They want you to describe the matrices that have two real eigenvalues of equal magnitude and opposite sign, such as 4 and -4.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top