- #1

- 757

- 0

Can anyone prove that the eigenvectors of symmetric matrices are orthogonal?

- Thread starter Curl
- Start date

- #1

- 757

- 0

Can anyone prove that the eigenvectors of symmetric matrices are orthogonal?

- #2

HallsofIvy

Science Advisor

Homework Helper

- 41,833

- 961

Let v be a eigenvector with eigenvalue [itex]\lambda_1[/itex] and u an eigenvector with eigenvalue \(\displaystyle \lambda_2\), both with length 1.

[itex]\lambda_1<v, u>= <\lambda_1v, u>[/itex]

(<u, v> is the innerproduct)

[itex]= < Av, u>= \overline{<v, Au>}[/itex]

(because A is symmetric)

("self adjoint" in general)

[itex]= \overline{<v, \lambda_2u>}= \lambda<v, u>[/itex]

so that

[itex]\lambda_1<v, u>= \lambda_2<v, u>[/itex]

[itex](\lambda_1- \lambda_2)<v, u>= 0[/itex]

Since [itex]\lambda_1[/itex] and [itex]\lambda_2[/itex] are not equal,

[itex]\lambda_1- \lambda_2[/itex] is not 0, <v, u> is.

[itex]\lambda_1<v, u>= <\lambda_1v, u>[/itex]

(<u, v> is the innerproduct)

[itex]= < Av, u>= \overline{<v, Au>}[/itex]

(because A is symmetric)

("self adjoint" in general)

[itex]= \overline{<v, \lambda_2u>}= \lambda<v, u>[/itex]

so that

[itex]\lambda_1<v, u>= \lambda_2<v, u>[/itex]

[itex](\lambda_1- \lambda_2)<v, u>= 0[/itex]

Since [itex]\lambda_1[/itex] and [itex]\lambda_2[/itex] are not equal,

[itex]\lambda_1- \lambda_2[/itex] is not 0, <v, u> is.

Last edited by a moderator:

- #3

mathman

Science Advisor

- 7,901

- 460

- Replies
- 2

- Views
- 128

- Last Post

- Replies
- 3

- Views
- 2K

- Replies
- 1

- Views
- 13K

- Last Post

- Replies
- 5

- Views
- 3K

- Last Post

- Replies
- 1

- Views
- 632

- Last Post

- Replies
- 9

- Views
- 1K

- Last Post

- Replies
- 2

- Views
- 3K

- Replies
- 9

- Views
- 3K

- Last Post

- Replies
- 1

- Views
- 1K

- Last Post

- Replies
- 7

- Views
- 10K